
Simple Biasing Methods 

One of the strongest features of Monte Carlo simulation is the freedom it provides to 
devise any type of trial move to enhance sampling of the ensemble.  So far we have 
encountered just the basic trial moves needed to perform simulations of the more popular 
ensembles (canonical; isothermal-isobaric; grand-canonical).  These trial moves are 
unbiased in the sense that no information about the current configuration enters into their 
prescription; these details enter only at the trial-acceptance stage.  Biased trials are made 
in a way that does use information about the configuration, and if designed well the 
consequence is that such trials are more likely to be accepted.  Note that biased sampling, 
in the sense we mean it here, does not involve any change in the limiting distribution.  
The biasing we introduce in the trial is offset somewhere else, usually in the formulation 
of reverse trial move and the acceptance probabilities.  This contrasts with biasing 
techniques that do attempt to modify the limiting distribution.  In these methods the 
biasing is removed by modifying the averages taken in the simulation.  No modifications 
of the averages are needed in the techniques we presently consider, which modify the 
transition probabilities while maintaining detailed balance for a given limiting 
distribution. 

We now turn to a discussion of how clever trial moves can be devised to perform better 
sampling.  It is appropriate to begin by considering what constitutes “better sampling”, so 
we first define and examine some performance measures of a MC simulation.  To make 
things concrete we return to our elementary discussion of a Markov process that samples 
just a few states.  We can look to see what features of the transition-probability matrix 
yield better values of the performance measures.  We then follow with a few examples of 
some specific biasing schemes in Monte Carlo simulation. 

Performance measures 

The performance of a Monte Carlo simulation usually concerns two issues: the rate of 
convergence to equilibrium, and the reproducibility of the averages.  The rate of 
convergence can be addressed in terms of the question: What is the likelihood of being in 
a particular state after a run of finite length n?  Is this likelihood close to the likelihood in 
the limiting distribution? Remember that the transition probability for a multi-step move 
is given as a power of the transition probability matrix governing the single-step moves.  
For a simple three-state process    

  

Although the probability distribution after n steps depends on the initial state, the key 
feature is the behavior of the matrix  and thus  itself, so we focus our analysis on it.  
The eigenvectors and eigenvalues of  are given by 
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  (1.1) 

where F is a matrix with columns formed from the eigenvectors of , and L is a 
diagonal matrix with elements given by the corresponding eigenvalues of . Equation 
(1.1) is manipulated to a similarity transform for   

  

From this it is easy to obtain a useful expression for  

  

The matrix  is also a diagonal matrix with elements given by powers of the 
eigenvalues, ln.  It can be shown that, because P is a probability matrix (non-negative 
elements with rows that sum to unity), one eigenvalue will be unity and all other 
eigenvalues will be of magnitude less than unity.  The unit eigenvalue dominates for 
large n, and the rate at which the other eigenvalues vanish for large n characterizes the 
rate of convergence of the simulation.  Thus a good form for the transition probability 
matrix has sub-dominant eigenvalues with magnitudes as close to zero as possible. 

Illustration 1 gives some examples of different transition-probability matrices that all 
correspond to the same limiting distribution.  The matrix labeled “Inefficient” has 
subdominant eigenvalues of 0.96.  This can be compared with the matrix formed from the 
Metropolis recipe (when in state i choose one of the other two states with equal 
probability to be trial state j, and accept the transition with probability min[1,pj/pi]), 
which has one zero sub-dominant eigenvalue and one equal to –0.5.  According to our 
analysis the Metropolis scheme will converge more quickly to the limiting distribution 
than the “Inefficient” algorithm.  Also present in this example is the matrix formed from 
the Barker algorithm (which we haven’t discussed in detail because it is not widely used).  
Our convergence measure indicates the Barker algorithm to be comparable to 
Metropolis—Barker has two subdominant eigenvalues of magnitude between the two 
Metropolis values.  Also included in this example is a very efficient scheme, which 
prescribes a transition from state 2 to states 1 or 3 (chosen with equal likelihood), 
immediately followed (with probability 1) by a move back to state 2.  In this case the 
system never stays in the same state twice.  The example is anomalous because the 
system never forgets its initial state; if starting in state 2, for example, after an even 
number of trials, no matter how many, it will always be back in state 2.  Associated with 
this long memory is a second, negative eigenvalue of unit magnitude whose influence 
does not decay for large n. 
 

An issue separate from the rate of convergence is the reproducibility of the results.  This 
is characterized by the variance of an average, taken over many independent realizations 
of the Markov process.  In our simple example we don’t have any particular averages in 
mind, but we can characterize the reproducibility of a process by examining the variance 
in the state occupancies.  The question we address is:  If an M-step Markov process is 
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repeated many times independently, how much variation do we observe in the fraction of 
time spent in any given state?  From one M-step run to another (where M is large), is the 
fractional occupancy reproducible?  Through propagation of error the variance in any 
average can be expressed in terms of the variances and covariances of the occupancies.  
For example the variance in some property U defined on a two-state system would be 

  

where the s1 and s2 terms form variances and covariances of the occupancies of states 1 
and 2.  We cannot make a too general statement about how to minimize , because the 
covariance can be negative.  If we know U1 and U2 , the values of the property U in states 
1 and 2, we could rewrite the right-hand side as a sum of squares, and then declare a good 
outcome as one that minimizes each term individually.  Lacking a general way to do this, 
we will instead consider the effect of the transition probabilities on the occupancy 
variances and covariances themselves.  All else being equal, it is better that all variances 
and covariances be close to zero. 

Fortunately, there exists a very nice formula that can give us these occupancy variances 
for a given transition probability matrix: 

  

where sij are the elements of the matrix 

  

where I is the identity matrix.  Note that the right-hand side of the variance equation is 
independent of M, indicating that the group on the left is also independent of M.  This is 
consistent with our previous experience with the 1/M decay of the variance in a Monte 
Carlo process.  The matrix of covariances determined by this formula is included with the 
examples in Illustration 1.  In terms of the average magnitude of the terms, the matrix 
labeled “Most efficient” gives the best performance (variance of order 0.1), while the 
“Inefficient” algorithm is clearly inferior (with variances of order 10).  Whereas the 
convergence measure was equivocal regarding the merits of  the Metropolis algorithm 
versus the Barker approach, by this measure Metropolis is markedly better (explaining 
why it is more widely used). 

A simple look at the good versus the poor transition-probability matrices gives some 
indication of what is desired in a good algorithm.  Clearly it is better to minimize the 
diagonal elements, meaning it is desirable to keep the process moving regularly from one 
state to the next.  But this in itself is not sufficient to ensure good performance.  Consider 
the 4-state process displayed in Illustration 1.  Here all the diagonal elements are zero, 
but the convergence and variance measures are still poor.  The problem is that there is a 
bottleneck from states 1 and 2 to states 3 and 4.  A good algorithm promotes movement 
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of the system among a wide variety of states, and does not let the system get trapped into 
sampling a small subset of all the relevant states (i.e., those with non-negligible 
probabilities in the limiting distribution).   

You can experiment with other transition probability matrices using the applet in 
Illustration 2.

0.0 0.5 0.5
0.25 0.5 0.25
0.5 0.5 0.0

æ ö
ç ÷P = ç ÷ç ÷
è ø

0.42 0.33 0.25
0.17 0.66 0.17
0.25 0.33 0.42

æ ö
ç ÷P = ç ÷ç ÷
è ø

0.97 0.02 0.01
0.01 0.98 0.01
0.01 0.02 0.97

æ ö
ç ÷P = ç ÷ç ÷
è ø

0 1 0
0.5 0 0.5
0 1 0

æ ö
ç ÷P = ç ÷ç ÷
è ø

Metropolis 

Barker 

Inefficient 

Most efficient 

( )0.25 0.5 0.25p =Limiting distribution 

( )1 0.96 0.96l =
9.2 6.1 3.1
6.1 12.2 6.1
3.1 6.1 9.2

- -æ ö
ç ÷S = - -ç ÷ç ÷- -è ø

( )1 0.33 0.17l =
0.30 0.25 0.05
0.25 0.50 0.25
0.05 0.25 0.30

- -æ ö
ç ÷S = - -ç ÷ç ÷- -è ø

( )1 0 1l = -
0.125 0 0.125
0 0 0
0.125 0 0.125

-æ ö
ç ÷S = ç ÷ç ÷-è ø

( )1 0 0.5l = -
0.10 0.125 0.02
0.125 0.25 0.125
0.02 0.125 0.10

-æ ö
ç ÷S = - -ç ÷ç ÷-è ø

0 0.99 0.01 0
0.99 0 0 0.01
0 0.01 0 0.99
0 0.01 0.99 0

æ ö
ç ÷
ç ÷P =
ç ÷
ç ÷ç ÷
è ø

( )1 0.98 0.99 0.99l = - -

6.2 6.2 6.2 6.2
6.2 6.2 6.2 6.2
6.2 6.2 6.2 6.2
6.2 6.2 6.2 6.2

- -æ ö
ç ÷- -ç ÷S =
ç ÷- -
ç ÷ç ÷- -è ø

Lots of movement 
1 Û 2; 3 Û 4 

Little movement  
(1,2) Û (3,4) 

Limiting distribution ( )0.25 0.25 0.25 0.25p =



 

Biasing the underlying Markov process 

Let us look again at the Metropolis formula for detailed balance 

  (1.2) 

With unbiased sampling it often happens that tij is small while pj/pi (and thus c) is large, 
indicating that the system is eager to accept a particular trial if only it could find it.  
Alternatively sometimes tij is non-negligible but c is very small, causing commonly 
encountered trials to be rarely accepted.  In these situations biasing methods can be used 
to steer the system toward the moves it is eager to accept while moving it away from 
trials that won’t likely be kept. 

Equation (1.2) requires 

  

As discussed above, one of our aims in enhancing performance is to keep the process 
moving, which means we would like for c (and hence 1/c) to be close to unity.  In this 
situation the underlying transition probabilities themselves satisfy detailed balance, and 
the system moves into a state with probability in direct proportion to its ensemble 
probability.  If candidate states included all in the ensemble, then this perfect situation is 
no different than direct importance sampling of the ensemble.  If it could be achieved 
there would be no need for the Markov process.  But it cannot, and we must settle for 
something less.  As in the usual Metropolis scheme, we restrict transitions to states that 
are not wildly different from the current one, but we use biasing to select intelligently 
from these states.  Another use of biasing is to expand the base of states considered by a 
single trial.  If we can get the system to move into a state that is wildly different from the 
current one, even if it has a small but non-negligible probability of being accepted, we are 
likely to improve the performance of a simulation. 

Insertion bias in GCMC simulations 

As our first example we will consider the molecule insertion/deletion trials in grand-
canonical Monte Carlo simulation.  Earlier we presented the algorithm and derived 
transition probabilities for these trials.  An important problem encountered in these 
simulations arises when the system density is high, which corresponds to a large value of 
the imposed chemical potential µ.  The difficulty is described by Illustration 3.  The 
insertion trial specifies that a new molecule be placed at a random position in the 
simulation volume.  At high density the most likely outcome of such a trial is an overlap 
with another molecule.  The result is a high-energy configuration that is sure to be 
rejected.  Indeed, for hard spheres near the freezing density the probability of random 
insertion without overlap is about 10-7. Complementing this problem is a similar one with 
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deletion.  A molecule selected at random is likely to be nicely nestled in the energy 
minima of its neighbors, so its removal is going to be accompanied by a substantial 

increase in the energy.  Compounding the issue is the fact that the chemical potential is 
large, and the acceptance of the removal trial is proportional to .  Consequently 
deletion trials are as likely to be rejected as insertion trial (of course this must be so or 
there would be a net removal of molecules).  Experiment with the applet given in 
Illustration 4 (GCMC simulation applet) to see how infrequently insertions and removals 
are completed at high chemical potential.   

One way to remedy this problem is to bias the insertion trials to regions of the simulation 
volume that do not result in overlap.  Finding such regions is a nontrivial problem that we 

will set aside for the purposes of this example.  The concept is described by Illustration 5.  
The green regions describe non-overlap positions for placement of the inserted molecule.  
Let us designate the volume of this region as , where V is the system volume and e is 
small if the density is large.  An insertion trial consists of the placement of a molecule at 
a point selected uniformly within this region.  The deletion trial is conducted as in the 
unbiased case.   
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The trial moves and their component probabilities are summarized in Illustration 6.  The 
only difference from the unbiased case is the presence of the e term in the molecule 
placement probability.  With the bias in the trial, acceptance parameter c becomes 

  

For large l the fractional volume available for insertion e is small, but their product may 
yield a c of order 1. 

Now we come to an important point.  For both the insertion and deletion trials, the 
acceptance parameter c is as given here.  Insertion is accepted with probability min[1,c], 
while deletion is accepted with probability min[1,1/c].  Note therefore that both the 
insertion and deletion trials need to know e.  For an insertion trial, e is computed 
naturally in the course of identifying the insertable region.  In deletion, e is not needed to 
conduct the trial, but the acceptance probability does depend upon it.  The e  computed 
for this purpose (i.e. deciding acceptance of a deletion trial) is that corresponding to the 
resulting configuration, in the absence of the deleted particle.  Remember that the 
acceptance of this deletion move is based in part on the likelihood that the reverse move 
will be made; and of course this re-insertion trial begins with, and thus uses an e for, the 
configuration obtained if the deletion trial is accepted. This general circumstance is one 
commonly encountered in biasing algorithms—the acceptance of a given trial requires a 
(perhaps nontrivial) calculation related to how the reverse trial would be completed. 

Derivative bias 

One way to bias a move is to use local information obtained from derivatives to lead the 
system in a favorable direction.  An example of this concept is found in the force bias 
method, in which the direction of movement of an atom is made through consideration of 

( 1)
UV e

N
be lc - D=

+

Event
[reverse event]

Probability
[reverse probability]

Select insertion trial
[select deletion trial]

½
[½ ]

Place molecule at rN+1
[delete molecule N+1]

dr/(eV)
[1/(N+1)]

Accept move
[accept move]

min(1,c)
[min(1,1/c)]



the force currently acting on it.  As with the unbiased case, movement of the atom is still 
within a finite region centered on its present position.  Through adjustment of a 
parameter, the degree of bias can be selected continuously from no bias at all to a 
complete bias such that the movement is selected practically deterministically in the 
direction of the force.  In the latter case, if the step size is not too large the energy is 
practically unchanged by the move, and the technique begins to resemble molecular 
dynamics.  In fact, one of the strengths of the force-bias approach is that it increases the 
effectiveness of multi-atom moves, which again form the basic step of a molecular 
dynamics simulation.  A related scheme is the virial-bias method for NPT simulations.  
Here the volume-change trial is conducted with consideration of the difference in the 
“internal pressure” (the virial) and the imposed ensemble pressure.  Note that acceptance 
of any derivative-bias trial depends on the value of the derivative both before and after 
the trial move.  Details of the methods are reviewed in the text by Allen and Tildesley. 

Derivative-bias schemes can hasten the convergence of a MC simulation, but not 
dramatically.  Improvements are of the order of a factor of 2 to 4.  Enhancements of this 
type are welcome, but perhaps not with the added effort needed to implement them.  One 
might prefer to let the simulation run 2 to 4 times longer instead.  The most important 
biasing schemes are those that open up the possibility to do simulations that simply could 
not be accomplished otherwise.  The simple schemes we are presently considering do not 
all reach that level of performance, although some are more effective than others are 
worth implementing.  In a subsequent chapter we will examine advanced biasing methods 
that do make the impossible possible (so to speak). 

Association bias 

Simulations of dilute but strongly interacting molecules are problematic.  Their strong 
interactions (hydrogen bonding, for example) leads to configurations in which the 
molecules form associated clusters.  On the other hand, because they are dilute there is an 
entropic advantage in having the molecules dissociated and spread roughly uniformly 
over the large available volume.  So both monomers and oligomeric clusters are (or can 
be, depending on the temperature) prevalent in such systems.  The problem that this 
presents to simulation is the difficulty a molecule has in making transition between being 
dissociated and being associated.  Unassociated molecules must find another cluster 
before association can occur; the rate at which this happens is roughly proportional to the 
(small) fraction of the total volume that is occupied by the molecules (more precisely, it 
is proportional to the fraction of the volume which corresponds to a new bonded 
configuration).  An associated molecule enjoys strongly favorable energetic interactions 
with its associates, and it is difficult to accept the movement of a molecule from this 
comfortable position off  to some place as an unbonded monomer.  Association bias 
methods aim to remedy this problem. 



A simple association-bias scheme is described by Illustration 7.  The bias displaces an 
unassociated molecule into a small region (of volume eV) centered on the position of 
another molecule.  In the reverse move an associated molecule is selected and placed at 
random anywhere in the simulation volume V.  The forward and reverse trial 
probabilities are dissected in Illustration 8.  The association trial includes several terms.  
First is the probability that the given molecule is selected.  Since this choice is made 
considering only the unassociated molecules, the probability is 1/Nu, where Nu is the 
number of unassociated molecules in the present configuration.  Then another molecule is 

selected at random from all other molecules in the system; for any given molecule this 
probability is 1/(N-1).  The first molecule is then placed at a random position selected 
uniformly in the bias region about the second molecule; the probability of selecting any 
position here is proportional to 1/(eV).  Almost.  At this point we must now consider that 
this very same position might have instead been selected by choosing a different second 
molecule.  This question can be answered easily.  Once the position is selected, we look 
to see if it belongs in the bias volume of any other molecules.  We call n the number of 
such molecules found.  So the total probability that the first molecule is placed in the new 
position is given by the expression recorded in Illustration 8. We should also consider the 
possibility that the molecule is placed in the new position via a standard unbiased atom 

Attempt placement 
in this region, of 
volume eV 



displacement trial, which might also be attempted as part of the overall MC sampling.  
For clarity of the example we will omit this consideration.   

The dissociation trial begins by selecting an associated molecule, with probability 
1/(Na+1), where Na is the number of associated molecules in the configuration before the 
association trial is attempted (so if the attempt succeeds, there will then be Na+1 
associated molecules).  The selected molecule is placed at a random position in the 
volume, with probability proportional to 1/V of selecting the position originally held 
before the association trial.  For these probabilities, detailed balance specifies the 
acceptance parameter to be 

  

There are a few points to make regarding the algorithm: 

• It is necessary to define explicitly what constitutes an “association”.  Typically this is 
defined via an energetic criterion (the pair energy between two molecules is below 
some (negative) value) or a geometric criterion, i.e., two molecules lie in some well-
defined geometric region (e.g., a cone) about one another. 

• It is necessary to keep track of the number of associated and unassociated molecules, 
and to be able to select one in either category at random.  Alternatively, it is 
acceptable to choose a molecule at random, then decide whether to do an association 
or dissociation trial based on its present association state.  It should not be taken for 
granted that a change like this in this algorithm leads to the same acceptance 
probabilities; a bit of thought is needed to show that the trial probabilities are 
equivalent.  
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• Both association and dissociation trials require knowledge of Nu and Na. 

• As described, there is a good chance that the association trial will lead to an overlap 
rather than to a favorable associated configuration.  Despite this, the biasing move 
may still yield a dramatic improvement in convergence.  The overlap condition may 
occur, say, 50% of the time, yielding then the other 50% of the time a decent 
association.  This contrasts with the unbiased case that may lead to an association 
0.01% of the time (for example), depending on how dilute the system is.  Regardless, 
it is simple to modify the algorithm to perform a more intelligent association trial 
(defining for example the bias volume as a hollow shell rather than a solid cube 
centered on another molecule). 

• An alternative approach to performing an association bias trial involves identifying 
all points in the simulation volume that correspond to an association state, and then 
choosing a point uniformly within this volume.  Even if the association volume about 
each molecule is a simple shape, this approach can lead to a very complex set of 
calculations.  It requires one to add up the volume of all such regions (simple enough) 
then to subtract the volume where these regions overlap, add back in triple overlap 
volumes, and so on. 

 

Using an approximation potential 

As our last example we consider an approach based on an approximation potential.  This 
biasing scheme has a different character than the examples previously presented.  The 
idea is to generate a new configuration in the Markov process by performing a short 
Markov subprocess using transition probabilities that are based on a simpler molecular 
model.  The simple model is chosen to approximate the true model while being less 
computationally demanding.  For example, the true model may involve a quantum-
mechanical treatment, or three-body interactions, or an Ewald sum, all expensive 
calculations that might be approximated for this purpose by a simple pairwise additive 
potential.  The acceptance probabilities for the subprocess (based on the approximate 
potential) can be computed much more quickly than the those for the true Markov 
process, so the subprocess can be used to move the system a considerable distance from 
the present configuration at less expense.  The configuration at the end of the subprocess 
forms the trial configuration for the true Markov process.  If the trial is rejected, the entire 
sequence of moves completed by the subprocess is discarded.   The approach is depicted 
in Illustration 9.  Note that averages are taken only for those configurations obtained after 
making an acceptance decision using the true potential. 

True potential Approximate True potential 



An acceptance criterion must be applied at the end of the subprocess, and to derive it we 
need to determine the transition probabilities for multi-step subprocess.  Each elementary 
step in the subprocess is governed by transition probabilities that obey detailed balance 
for the approximate potential: 

  

where the superscript a indicates the limiting distribution and the transition probabilities 
for the Markov process based on the approximate potential.  It is possible to show that the 
multi-step transition probabilities also obey this same detailed balance equation 

  (1.3) 

where the (n) indicates the n-step transition probability.  The proof of this statement is 
easily made using matrix manipulations.  Note that the condition of detailed balance may 
be written compactly as 

  (1.4) 

where P is a diagonal matrix with elements given by the limiting-distribution transition 
probability, and T indicates a matrix transpose.  Remembering that the n-step transition 
probabilities are the elements of the matrix , then the proof merely has to show that 
Eq. (1.4) implies  

  

We leave this proof as an exercise. 

The trial probabilities for our “true” Markov process are the n-step transition probabilities 
for the approximate potential 

  

In the Metropolis scheme detailed balance for the true process requires  

  

In light of Eq. (1.3), we have 
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Which yields for the acceptance parameter c 

  

For example, if the simulation were conducted in the canonical ensemble, the limiting 
distributions are of the form , so the acceptance parameter is 

  

where DU is the energy difference between the trial and original configurations.  We note 
again our good fortune in the cancellation of the partition functions.  If the approximation 
potential gives a good description of the real potential, the argument of the exponential 
will be small and c will be close to unity, indicating that the n-step move will probably be 
accepted. 
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