
Monte Carlo Simulation

Monte Carlo simulation is the application of Monte Carlo methods to molecular
simulation. The convergence properties of the Monte Carlo methods give them
great advantage over methodical techniques when applied to the very high-dimensional
integrals encountered in statistical mechanics. Moreover, sampling the complex shapes
of the important regions of these integrals requires the application of a Markov chain,
which is almost always accomplished via the Metropolis scheme or some extension of it.

Monte Carlo simulation involves the repeated application of an elementary procedure.
First, a trial configuration is generated by making a perturbation to the a configuration of
molecules. For example, a randomly selected atom is moved by some small amount from
its present position. Then the ratio of probabilities for the trial and original
configurations is computed, and from this quantity a decision is made whether to accept
or reject the trial. If the trial is accepted, the new configuration is taken as the next state
in the Markov chain, otherwise the original configuration is taken as the next state in the
chain. Averages are collected over the many configurations so generated, until the
computer resources budgeted to the calculation expire.

The power of the Monte Carlo method comes in the great variety perturbations that can
be made to generate a trial configuration. The changes need not be physically realistic.
One can, for example, take a molecule and change its species identity, say, converting a
methane molecule to a water molecule. Such a move would not be made if one were
attempting to generate samples in the canonical ensemble, but it might be done in a
simulation of the grand-canonical ensemble, where the number of molecules of all types
must fluctuate during a simulation. Thus the statistical mechanical ensemble is the first
determinant of the types of moves that are attempted in a Monte Carlo simulation. Trials
must be attempted that permit the system to sample the relevant microstates of the
ensemble.

Within the constraints of sampling a given ensemble, one can be very creative in devising
trials that significantly enhance the statistical quality of the calculation. As we learned in
our study of Markov processes, it is advantageous to keep the system moving, and to
avoid repeatedly visiting the same states over and over. It is also good to get a wide
sampling of all possible configurations, and not to localize the sampling to a small corner
of configuration space. Without cleverly constructed trial moves, it can be very difficult
to encourage the system to explore a wide range of configurations. Good trial moves will
transport the system in a single step from one configuration to another that is significantly
different. A lot of progress in Monte Carlo simulation over the past decade has been
made through the development of trial moves that work well in sampling complex fluids.

Most Monte Carlo simulations employ several types of trial moves to generate new
configurations. For example, one trial may displace an atom, while another trial may
rotate an entire molecule. At each elementary MC step, a decision is first made regarding
which type of trial will be attempted. To satisfy detailed balance, this decision must be
made via a random selection. Clearly, if an atom displacement trial is always followed

1/ 2n-

by a molecule rotation trial, then the transition probability is zero for reversing either of
these moves in the subsequent step. The same may be said about the selection of the
atom or molecule that is moved: if it is done in sequence (a trial and acceptance decision
is made for one atom after another, following some predetermined order), there is no
chance of reversing any of the moves in a subsequent step. Perhaps even worse, this
prescription gives transition probabilities that depend on the (recent) history of the
process, so the chain is not Markov. If instead all decisions are made probabilistically, so
that for example there is a ½ probability of making either an atom move or molecule
rotation in each elementary step, then the process is indeed Markov and detailed balance
can be satisfied. While it is true that it is not necessary to satisfy detailed balance to
generate the correct limiting distribution (ref Deem), our preference is to not invite
problems and to use the stochastic approach to trial selection.

In our molecular simulation API, the type of simulation performed (MC versus MD) is
specified by the Integrator. We have a class, IntegratorMC, that conducts Monte Carlo
simulations. As just discussed, it repeated selects a trial move with some fixed pre-
determined probability, and it executes the trial. However, this class is very general in
that it contains no details about what perturbation is attempted in the trial. This
information is coded into a separate MCMove class. Different subclasses of MCMove
attempt different types of trials. At the outset of the simulation, the types of trials to be
attempted are specified by adding instances of the corresponding MCMove subclasses to
the IntegratorMC. Each MCMove subclass has associated with it a “frequency” value
that indicates how likely it is to be selected as the trial for any given MC step. These
values are used as unnormalized probabilities for selecting a trial. For example, instances
of the MCMoveAtom and MCRotateMolecule classes may each have a frequency of 1,
which means that at any point in the simulation they are equally likely to be selected as
the next trial. There may be a third type of move, say MCMoveMolecule, having a
frequency set (for example) to 2, which means that it is twice as likely of being selected
as either of the other moves. Then for any elementary MC step, the likelihood of
selecting an atom displacement, a molecule rotation, or a molecule displacement is in the
ratio of 1:1:2, or probabilities of ¼, ¼, and ½, respectively.

Here’s the basic code that performs the MC trial move. This is a method in the class
IntegratorMC, and it is called repeatedly by the run method defined in the Integrator
superclass. The frequencyTotal field is computed as the sum of the unnormalized
frequencies assigned to each MCMove. The MCMoves are arranged in a linked list, so
they can be iterated by calling the nextMove method present in each.

//Method from class IntegratorMC
public void doStep() {
 //Select a trial at random
 int i = (int)(rand.nextDouble()*frequencyTotal);
 trialMove = firstMove;
 while((i-=trialMove.getFrequency()) >= 0) {
 trialMove = trialMove.nextMove();
 }
 //Perform the trial and decide acceptance
 trialMove.doTrial(firstPhase)
}

The following initialize method is called at the start of the simulation. It doesn’t do much
more than compute the sum of the unnormalized frequencies. Some moves have a

frequency that is given as a nominal frequency times the number of molecules in the
phase (so for example a particle displacement trial is attempted N times while a volume
trial is attempted once, on average). This conversion is done by the resetFrequency
method of MCMove.

The add method of IntegratorMC is used to add a subclass of MCMove to the repertoire
of trials performed in the simulation. It inserts the given move into the linked list of
moves maintained by the integrator.

We will present some examples of specific MCMove subclasses as we discuss a few of
the types of trials that are commonly employed in a MC simulation.

Displacement trial

The most basic of the MC trials is the simple movement of a randomly selected atom
from one position to another. The new position is normally selected uniformly within
some cubic region centered on the current position. A decision is made to accept or
reject the trial such that the probability of acceptance gives an overall transition
probability to satisfy microscopic reversibility. We will consider in detail how this
probability is constructed, as the reasoning is common to MC trials of any complexity.

The limiting probability distribution is dictated by the ensemble being sampled, but in
almost all situations the acceptance probability is exactly that developed in the canonical
ensemble, so we will assume that NVT is the governing ensemble. In this case, the
limiting probability distribution is

//Method from class IntegratorMC
public void add(MCMove move) {
 if(firstMove == null) {firstMove = move;}
 else {lastMove.setNextMove(move);}
 lastMove = move;
 move.parentIntegrator = this;
 }

//Method from class IntegratorMC
public void initialize() {
 deployAgents(); //put an Agent of this integrator in each atom
 frequencyTotal = 0; //compute frequency sum
 for(MCMove m=firstMove; m!=null; m=m.nextMove()) {
 m.resetFrequency(firstPhase);
 frequencyTotal += m.getFrequency();
 }
 }

 (1.1)

We include the differential elements drN to render these as probabilities and not
probability densities. The momentum contributions have been integrated out.

The transition probabilities for the Markov process are constructed to ensure that the
sample of states converges to this limiting distribution. In the Metropolis scheme
introduced in the last section, the transition probability is formed as the product of the
underlying transition probability t and the acceptance probability min(1,c), where c is
chosen to enforce the detailed balance condition. To determine c we must analyze the
trial process in detail to evaluate t.

The trial consists of the movement of atom k from position rold to position rnew. The
probability that the Markov step selects this trial move can be constructed as in

Illustration 1. We assume that we have already decided to make a displacement trial, and
that the likelihood of making this choice is unchanging, and in particular is independent
of the configuration of molecules. Then the first step in making the move happen is to
select the atom k; the probablity that this will occur is 1/N, where N is the number of
atoms in the system. Next the atom must be moved to a position within dr of rnew; this
probability is dr/v, where v is the volume of the region upon which the new position is
selected uniformly. The reverse move must also be analyzed now. To do this we
consider the likelihood that the same trial move would bring the system from a state in
which molecule k is at the position we have designated rnew to the position we call rold. In
this case the sequence of steps follows just as for the forward move. In this manner we
conclude that the underlying forward- and reverse-step transition probabilities are

()1()
NN N U N

N
d e d

Z
bp -= rr r r

Event
[reverse event]

Probability
[reverse probability]

Select molecule k
[select molecule k]

1/N
[1/N]

Move to rnew

[move back to rold]
dr/v

[dr/v]

Accept move
[accept move]

min(1,c)
[min(1,1/c)]

As discussed in our earlier introduction to the Metropolis scheme, the detailed balance
condition requires that the forward-move acceptance probability c satisfy

With the ensemble distribution given by (1.1) this becomes

Upon cancellation of like terms, this reduces to

We note how fortunate it is that the configurational integrals ZN cancel, as there is no
simple means to determine them. Thus the acceptance can be completed knowing only
unnormalized limiting-distribution probabilities.

The method in the MCMoveAtom class that completes this trial move follows. To have
the MC simulation complete trials in which atoms are displaced, an instance of this class

1

1 1

ij

ji

d
N v

N v

t

t

= ´

= ´

r

i ij j jip t c p t=

1 1 1 1
old newU N U N

N N

e d e d
Z N v Z N v

b b
c

- -
´ ´ = ´

r r

()new oldU Ue bc - -=

//Method from class MCMoveAtom
public void thisTrial(Phase phase) {
 double uOld, uNew;
 if(phase.atomCount==0) {return;} //no atoms to move

 int i = (int)(rand.nextDouble()*phase.atomCount); //pick a random number from 0 to N-1
 Atom a = phase.firstAtom();
 for(int j=i; --j>=0;) {a = a.nextAtom();} //get ith atom in list

 uOld = phase.potentialEnergy.currentValue(a); //calculate its contribution to the energy
 a.displaceWithin(stepSize); //move it within a local volume
 phase.boundary().centralImage(a.coordinate.position()); //apply PBC
 uNew = phase.potentialEnergy.currentValue(a); //calculate its new contribution to energy

 if(uNew < uOld) { //accept if energy decreased
 nAccept++;
 return;
 }
 if(uNew >= Double.MAX_VALUE || //reject if energy is huge or doesn’t pass test
 Math.exp(-(uNew-uOld)/parentIntegrator.temperature) < rand.nextDouble()) {
 a.replace(); //...put it back in its original position
 return;
 }
 nAccept++; //if reached here, move is accepted
 }

must be added to the IntegratorMC class at the beginning of the simulation. Illustration 2
presents an applet that performs Monte Carlo simulation with atom displacement trials as
given here.

An important performance consideration in conducting these trials involves the selection
of the size of the step attempted in the displacement. Illustration 3 describes the issue.
The trial consists of movement of the selected atom to a position selected uniformly in
the blue region. It is desirable to have many accepted trials of very large atom
displacements, but these goals are usually in conflict. A large displacement is likely to
find the moved atom in a condition of overlap with another atom, with consequent
rejection of the trial; small steps are likely to be accepted because they are accompanied
by small energy changes. But a very small step doesn’t do much to promote good
sampling of configurations. An operational rule of thumb is to size the displacement
region such that 50% of all trials are accepted. There is little quantitative analysis behind
this choice, and there are arguments made for a much smaller target. This is particularly
the case if the acceptance algorithm is alert to making the rejection decision before
considering the total energy change; this can be done for example in hard-potential
systems as soon as an overlap is discovered in the trial configuration.

The MCMove class has a method that performs tuning of parameters governing how the
trial is conducted. It is shown here. Since it is defined and invoked in the superclass of
all MCMove classes, it is inherited by them and thus does not have to be coded into each
new MCMove subclass.

Large step leads to
less acceptance but

bigger moves

Small step leads to
less movement but
more acceptance

http://www.cheme.buffalo.edu/kofke/applets/SimpleMC.html
http://www.cheme.buffalo.edu/kofke/applets/SimpleMC.html

Volume-change trial moves

In simulations performed in the NPT or other isobaric ensembles, it is required to conduct
perturbations that lead the system to explore different volumes. An effective way to
change the system volume is to complete the volume change while simultaneously
scaling all the molecule center-of-mass positions (and thereby their mutual separations)
by a linear scale consistent with the volume change. This idea was previously
encountered by us when we derived the virial formula used to compute the pressure in a
NVT simulation, and the reader should review that section if not familiar with it.

The limiting distribution in the NPT ensemble is

where again we ignore the momentum degrees of freedom, putting an r subscript on the
partition function D to indicate that it does not contain the momentum contribution either.
In terms of the scaled coordinates s = r/V introduced previously we have

In our simulation we sample sN and V. Atom and molecule displacements are performed
as described above; volume-change trials are conducted as described in Illustration 3.
First a perturbation d is selected uniformly with the range (-dV,+dV), and the new trial
volume is computed as Vold + d. All molecule centers-of-mass are multiplied by the ratio
of the new to the old linear dimensions of the system ,
where d is the spatial dimension. In this manner the scaled coordinate s are held fixed
during the transformation. The reverse move is completed by the same set of steps.
From this specification we can easily write down the forward and reverse underlying
transition probabilities for the Markov trial

() ()1,
NU PVN NV e d dV

b b
p

- -
=
D

r

r
r r

() ()()1,
NU V PVN N NV e V d dV

b b
p

- -
=
D

s

r
s s

1/(/)new old new old d
i ir r V V= ´

1
2
1
2

ij

ji

V

V

t
d

t
d

=

=

//Method from class MCMove
public void adjustStepSize() {
 if(nTrials == 0) {return;}
 if(nAccept > (int)(acceptanceTarget*nTrials)) {stepSize *= 1.05;}
 else{stepSize *= 0.95;}
 stepSize = Math.min(stepSize,stepSizeMax);
 stepSize = Math.max(stepSize,stepSizeMin);
 nTrialsSum += nTrials;
 nAcceptSum += nAccept;
 nTrials = 0;
 nAccept = 0;
}

With the Metropolis scheme for constructing transition probabilities, the correct limiting
distribution is obtained if the acceptance probabilities are constructed to
satisfy

From which c is

where D indicates the difference (new)-(old). Thus a volume-change trial (Vold ® Vnew)
performed as just described is accepted with probability min(1,c).

Volume-change trials are generally more expensive to conduct than a simple atom
displacement, since each trial usually requires a full recalculation of the potential energy,
with an O(N2) sum over all atom pairs (assuming no neighbor lists are used). In contrast
an atom displacement requires an O(N) calculation involving a sum over all atoms
interacting with the displaced one. On the other hand, a volume change represents a
larger perturbation, and the degree that it changes the system is roughly comparable to
performing a displacement trial once for each atom. Consequently, the frequency of
volume-trial attempts is usually set to about 1/N times the frequency of a a single atom
displacement trial. There can be mitigating factors. If the molecules are monatomic and
the potential is spherically symmetric, it is usually possible to compute the energy by a
simple rescaling of one or more atom sums, without conducting the O(N2) summation;
these atom sums must be updated with each atom-displacement trial. If the potential is
not pairwise additive, the atom-displacement trial may be much more expensive than an
O(N) calculation.

Note that rescaling is performed to the molecule centers of mass, and that each atom
position is not scaled separately. Intramolecular interactions are usually much more rigid
than intermolecular ones, and by scaling only the centers of mass the volume trial does

() ()() ()
11 1min(1,) min(1,)

2 2

old old new newN NU PV old U PV newe V e V

V V

b b

cc
d d

- + - +é ù é ù
ê ú ê úé ù é ù´ = ´ê ú ê úê ú ê úD Dë û ë ûê ú ê ú
ë û ë û

r r

exp () ln(/)new oldU P V N V Vc bé ù= - D + D +ë û

Event
[reverse event]

Probability
[reverse probability]

Select Vnew

[select Vold]
1/(2 dV)

[1/(2 dV)]

Accept move
[accept move]

Min(1,c)
[Min(1,1/c)]

not affect the intramolecular atomic distances. Doing otherwise—scaling the atom
positions individually, and thereby their intramolecular separations—would greatly
constrain the size of the volume perturbations that could be accomplished in a single trial.

As with the atom displacement trial, the maximum single-step volume change dV can be
adjusted to improve the performance of the simulation. For a given N, we would expect
that larger volumes should employ a larger dV for optimal performance (however that is
defined). Normally we cannot let the step size depend on the volume, as this would
introduce a bias toward smaller volumes, but through a simple reformulation of the
probability distribution the same effect can be realized. In particular, if we consider lnV
rather than V itself as the sampled quantity, we have for the limiting distribution

In the trial move we take a step d in lnV: , with d selected
uniformly in some interval centered on zero, so the new and old volumes are related

The trial is accepted with probability

A Java code implementing this trial via a subclass of MCMove is shown here

() ()() 1, ln ln1 NU V PVN N NV e V d d V
b b

p +- -
=
D

s
s s

() ()ln lnnew oldV V d= +

new oldV V ed=

1exp () () ln(/)new oldU P V N V Vc bé ù= D + +- D +ë û

// Method from class MCMoveVolume
public void thisTrial(Phase phase) {
 double hOld, hNew, vOld, vNew;
 vOld = phase.volume();
 hOld = phase.potentialEnergy.currentValue() //current value of the enthalpy
 + pressure*vOld;

 double vScale = (2.*rand.nextDouble()-1.)*stepSize; //choose step size
 vNew = vOld * Math.exp(vScale); //Step in ln(V)
 double rScale = Math.exp(vScale/(double)Simulation.D); //evaluate linear scaling
 phase.inflate(rScale); //scale all center-of-mass coordinates

 hNew = phase.potentialEnergy.currentValue() //new value of the enthalpy
 + pressure*vNew;
 if(hNew >= Double.MAX_VALUE || //decide acceptance
 Math.exp(-(hNew-hOld)/parentIntegrator.temperature+(phase.moleculeCount+1)*vScale)
 < rand.nextDouble()) {
 phase.inflate(1.0/rScale); //reject; put coordinates back to original positions
 }
 nAccept++; //accept
}

Illustration ? presents a NPT MC simulation applet.

Molecule insertion/deletion trials

We now turn to the last of the elementary trial moves that we will considerin in this
section. The grand-canonical ensemble contains elements having differing numbers of
molecules, so simulations of this ensemble must permit fluctuations in molecule
numbers. The direct way to accomplish this is to attempt random insertions and deletions
of molecules to and from the simulation volume. As before, these trials must be
attempted and accepted to ensure that the simulation yields configurations according to
the grand-canoncial probability distribution. Let us examine it now:

 (1.2)

Note that the momentum degrees of freedom depend on N and do not cancel with like
terms in the partition function. It is convenient to introduce the absolute activity l
(which should not be confused with the activity defined in solution thermodynamics)

which with Eq. (1.2) gives

 (1.3)

Note that we do not carry an N! term in this probability distribution. The term arises in
the partition function only because of the phase space integration, which causes each
configuration to be overrepresented N! times. The coordinates r in Eq. (1.3) represent
positions in space—the interpretation is “this is the probability that we have any molecule
within dr of the position r1, and any other molecule with dr of r2,” and so on. Because
the molecules are indistinguishable (assuming not a mixture), this specifies a microstate
of the ensemble. In the phase-space integral the interpretation of r is different: each r
there represents the coordinate of a particular molecule. Each microstate (in the sense of
Eq. (1.3)) is represented N! times in the integral, once for each permutation of the
positions of the molecules. Thus the phase-space integral must be accompanied by the
N! division to render the correct partition function. We haven’t had to pay much
attention to this subtlety until now because N is unchanged by the trial moves we
encountered so far.

As before we must consider both the forward and reverse trial moves to formulate the
acceptance probabilities for each. The components of each trial and their probabilities
are summarized in Illustration 4. We assume we have already made the decision that an
insertion/deletion trial will be attempted. We then choose with equal probability whether
to perform an insertion or a deletion trial. If an insertion we select a position rN+1

() ()1 1;
NU NN N

dNN e d
b bµ

p
- +

=
X L

r
r r

d
ebµl º
L

() ()1;
NUN N NN e d

b
p l

-
=
X

r
r r

randomly with uniform probability over the entire simulation volume and the molecule is
placed there. If a deletion we select a molecule randomly and remove it. The underlying
transition probabilities specified by these moves are

The detailed balance equation is as follows

solution for c yields

When one actually goes about performing the moves it is easy to be confused over the
value of N as we use it here. To help clarify this, we write the acceptance probabilities
specifically for the insertion and deletion moves. An insertion trial (N ® N+1) is
accepted with probability

1(insertion)
2
1 1(deletion)
2 1

ij

ji

d
V

N

t

t

= ´

= ´
+

r

1 1
11 1 1min(1,) min(1,)

2 2 1

old newU N N U N Ne d d e d
V N

b b

c
l lc

- - + +é ù é ù´ ´ = ´ ´ê ú ê úX X +ë û ë û
r r r

(1)
UV e

N
blc - D=

+

1)
insertion min 1,

1
N NU UVA e

N
l +-(-é ù= ê ú+ë û

Event
[reverse event]

Probability
[reverse probability]

Select insertion trial
[select deletion trial]

½
[½]

Place molecule at rN+1
[delete molecule N+1]

dr/V
[1/(N+1)]

Accept move
[accept move]

min(1,c)
[min(1,1/c)]

while the deletion-trial (N ® N-1) acceptance probability is

Note that insertions are favored by large values of l and/or V, while the acceptance of a
deletion trial is enhanced at large N. Importantly, note that when N = 0 the acceptance
probability for a deletion trial is well defined, and is equal to zero. If the system samples
a state having zero particles, there must still be a probability-½ attempt to delete a
particle. This move will not be accepted, but doing otherwise—attempting only to insert
when N = 0—leads to an inappropriate bias toward non-zero N. A rejected N = 0
deletion trial leads to another N = 0 configuration that rightly belongs in the simulation
averages.

The following Java codes show how the insertion and deletion trials are implemented by
the class MCMoveInsertDelete. The code here is appropriate for a single-component
system (i.e., it is not suitable for mixtures). First is the basic code that selects whether to
attempt an insertion or a deletion.

The real work is done in the insertion/deletion methods.

1)
deletion min 1, N NU UNA e

Vl
--(-é ù= ê úë û

//Method in class MCMoveInsertDelete
public final void thisTrial(Phase phase) {
 if(rand.nextDouble() < 0.5) {
 trialInsert(phase);
 }
 else {
 trialDelete(phase);
 }
}

//Method in MCMoveInsertDelete
private final void trialInsert(Phase phase, Species s) {
 Species.Agent s = phase.firstSpecies();
 double uNew;
 Molecule m = s.parentSpecies().getMolecule(); //make new molecule
 m.translateTo(phase.randomPosition()); //place it at random position
 uNew = phase.potentialEnergy.insertionValue(m); //compute molecule’s energy
 if(uNew == Double.MAX_VALUE) { //overlap
 return;
 }
 //here we take the absolute activity lambda = exp(+beta*mu)
 double bNew = Math.exp((mu-uNew)/parentIntegrator.temperature)
 * phase.volume()/(s.getNMolecules()+1);
 if(bNew > 1.0 || bNew > rand.nextDouble()) { //accept
 phase.addMolecule(m); //make trial molecule officially in phase
 }
}

A Java applet implementing a MC simulation in the grand-canonical ensemble may be
viewed in Illustration ?.

//Method in MCMoveInsertDelete
private final void trialDelete(Phase phase) {
 Species.Agent s = phase.firstSpecies();
 if(s.getNMolecules() == 0) {return;} //no molecules to delete; trial over
 double bOld, bNew;
 int i = (int)(rand.nextDouble()*s.getNMolecules()); //select a molecule
 Molecule m = s.firstMolecule;
 for(int j=i; --j>=0;) {m = m.nextMolecule();}

 bOld = Math.exp((mu-phase.potentialEnergy.currentValue(m))
 /parentIntegrator.temperature);
 bNew = s.nMolecules/(phase.volume());
 if(bNew > bOld || bNew > rand.nextDouble()*bOld) { //accept
 phase.deleteMolecule(m);
 }
}

	ZEqnNum586457
	ZEqnNum449210
	ZEqnNum595393
	ZEqnNum581562

