
Markov Processes 

Let us summarize our discussion of Monte Carlo integration.  We have learned that it is 
possible to evaluate integrals by a process in which the integration space is sampled 
randomly.  Values of the integrand evaluated at these randomly chosen points can be 
summed and normalized, just as we do with methodical schemes based on equally spaced 
abscissas, to give a good estimate of the integral.  These Monte Carlo schemes gain 
significant advantage over methodical approaches when applied to high-dimensional 
integrals.  In these situations, and in particular when applied to statistical-mechanics 
integrals, the integral may have significant contributions from only a very small portion 
of the entire domain of integration.  If these regions of integration can be sampled 
preferentially, with a well-characterized bias, then it is possible to correct for the biased 
sampling when summing the contributions to the integral, and thereby obtain a higher-
quality estimate of the integral.  This idea is known as importance sampling.  The basic 
equation of importance-sampling Monte Carlo integration can be written in a compact 
form 
  

This formula states that the integral, defined here as the unweighted average of a function 
f, can be expressed as the weighted average of f/p , where p is the weight applied to the 
sampling. We are now ready to address the question of how to sample a space according 
to some weight p. 

A stochastic process is a procedure by which a system moves through a series of well-
defined states in a way that exhibits some element of randomness. A Markov process is a 
stochastic process that has no memory.  That is, the probability that the system moves 
into a particular state depends only upon the state it is currently in, and not on the history 
of the past visitations of states.  Thus, a Markov process can be fully specified via a set of 
transition probabilities $\pi_{ij}$ that describe the likelihood that the system moves into 
state $j$ given that it is presently in state $i$.  The full set of transition probabilities can 
be viewed as a matrix $\Pi$. 

As a simple example, we can consider a system that can occupy any of three states.  The 
probability of moving from one state to another in a Markov process is given via the 
transition probability matrix (TPM) 

  (1.1) 

where for the sake of example we have filled in the matrix with specific values for the 
transition probabilities.  Now consider what happens in a process that moves from one 
state to another, each time selecting the new state according to the transition probabilities 
given here (for example, say the system presently is in state 1; generate a random number 
uniformly on (0,1); if the value is less than 0.1, stay in state 1; if between 0.1 and 0.6, 
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move to state 2, otherwise move to state 3).  One could construct a histogram to describe 
the number of times visited in each of the three states during the process.  After a long 
period of sampling, steady state is reached and the histogram does not change with 
continued sampling.  The histogram so obtained is called the <em>limiting 
distribution</em> of the Markov process.  Examine the applet in Illustration 1 to see 
Markov sampling in action. 

So what is the connection to Monte Carlo integration?  The scheme is to devise a Markov 
process to yield a limiting distribution that covers the important regions of our simulated 
system.  In this manner we can do importance sampling of a complex region of 
integration by specifying only the transition probabilities of the Markov process.  To 
accomplish this we need to develop the connection between the transition probabilities 
and the limiting distribution. 

Several important features should be noted:  first, each probability is properly specified, 
<em>i.e.</em>, it is nonnegative and does not exceed unity; second, each row sums to 
unity, indicating a unit probability for going from one state to another in a given step; 
third, the diagonal elements are not necessarily zero, indicating that an acceptable 
outcome for a Markov step leaves the system in its present state.  More on this detail 
later.  In all of what follows it is important that we have a transition-probability matrix 
that corresponds to an ergodic process.  Ergodicity was discussed in a previous section.  
In this context, it means that it is possible to get from one state to another via a 
sufficiently long Markov chain.  Note it is not required that each state be accessible from 
every other state in a single step—it is OK (and very common) to have zero for some of 
the transition probabilities. 

Limiting  distribution 

We consider now how the limiting distribution relates to the TPM.  Consider the product 
of P with itself 

  

Look closely at the first (1,1) element.  It is the sum of three terms.  The first term, 
is the probability of staying in state 1 for two successive steps, given that the 

system started in state 1.  Similarly, the second term in the sum  the probability 
that the system moves in successive steps from state 1 to state 2, and then back again.  
Finally the third term is the probability of moving from 1 to 3 and back to 1.  Thus the 
(1,1) terms in the product matrix contains all ways of going from state 1 back to state 1 in 
two steps.  Likewise, the (1,2) term of the product matrix is the probability that the 
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system moves from state 1 to state 2 in exactly two steps.  The same interpretation holds 
for all the terms in the product matrix.  Thus the square of P is a two-step transition-
probability matrix, and in general the multiple product Pn is the n-step TPM 

  

where each term  is defined as the probability of going from state i to state j in 
exactly n Markov steps. 

Let us define  as a unit state vector, thus (for a 3-state system) 

  

Then  is a vector describing the probabilities for ending at each state after 
n Markov steps beginning at state i  

  

The limiting distribution corresponds to , and will be independent of the initial 
state i if the TPM describes an ergodic process 
  

by which we define p.   

The limiting distribution obeys a stationary property.  Starting with its expression as a 
limit 
  

we can take out the last multiplication with the TPM 

  

The limit in parentheses is still gives the limiting distribution 
  (1.2) 

Evidently p is a left eigenvector of the matrix P, with unit eigenvalue. That such an 
eigenvector (with unit eigenvalue) exists is guaranteed by the stipulation that each row of 
P sum to unity (this is an application of the Peron-Frobenius theorem). 
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 Written explicitly, the eigenvector equation for p corresponds to the set of 
equalities (one for each state i in the system) 
  (1.3) 

where the sum extends over all states.  If the limiting probabilities pi and the transition 
probabilities pij all satisfy the following relation 
  (1.4) 

then they also satisfy the eigenvector equation as presented in Eq. (1.3), as is easily 
shown 

  

The relation given in Eq. (1.4) is known as detailed balance, or the principle of 
microscopic reversibility.  As demonstrated, it presents a sufficient condition for the 
probabilities to satisfy Eq. (1.3), but it is not a necessary condition.  In fact, for a given, 
well-formed TPM it is likely that the limiting-distribution probabilities do not satisfy 
detailed balance.  For example, the particular TPM introduced in Eq. (1.1) clearly cannot 
satisfy detailed balance; one of the elements (p23) is zero, while its detailed-balance 
counterpart (p32) is not zero.  Equation (1.4) cannot be satisfied for this pair (unless 
perhaps p3 is zero, but this clearly is not the case here since there is a route to state 3 via 
state 1). 

Deriving transition probabilities 

The utility of detailed balance is not in determining the limiting distribution from 
a set of transition probabilities.  In fact, our need is the opposite:  we have a specification 
for the distribution of states, and we want to apply a Markov process to generate states 
according to this distribution; how can we construct appropriate transition probabilities to 
achieve this aim?  As demonstrated in Illustration 2, there are many possible choices for 
the set of transition probabilities that yield a given limiting distribution.  Of course, we 
need to generate only one set to perform the Markov process.  The choice of transition 
probabilities can be dictated by convenience and performance (that is, how well they 
sample all relevant states for a finite-length Markov chain). 

Detailed balance is an extremely very useful guiding principle, because it leads us 
to generate a valid set of transition probabilities while considering them only a pair at a 
time.  This contrasts with the full eigenvector equation, which involves all the states at 
once.  The implication there is that all of the transition probabilities must be specified 
together and at one time, so to satisfy this relation between them.  By focusing instead on 

i j ji
j

p p p=å

i ij j jip p p p=

i j ji
j

i ij
j

i ij i
j

p p p

p p

p p p

=

=

= =

å

å

å



the sufficient condition of detailed balance, a great burden is removed.  We do not have 
to evaluate all transition probabilities for all states at once, and in fact we do not have to 
evaluate all transition probabilities, period.  Instead we can get away with evaluating 
them only as we need them.  The calculation of the transition probabilities can be tied 
right into the Markov chain, so that only those encountered during a given sequence are 
actually computed.  The number of microstates in a typical statistical mechanics system is 
huge, so there is immense savings in exploiting this “just-in-time” calculation scheme 
given to us by detailed balance.  Still, one should not lose sight of the fact the 
microscopic reversibility is not required, and that it may be advantageous to violate the 
principle at some times; but one should take caution that alternative transition 
probabilities are consistent with the expected limiting distribution.  Oddly enough, in a 
molecular simulation (and unlike the simple examples given here) there is no easy way to 
check, even a posteriori, that the limiting distribution generated by the Markov sequence 
actually coincides with the target distribution.  Consequently it is quite possible for an 
error in the formulation of the transition probabilities to remain undetected. 

The Metropolis Algorithm 

 One way to implement a Markov sequence is as described earlier:  at each step 
make a decision about which state to move to next, with the likelihood of selecting any 
state given exactly by the corresponding transition probability; once the selection is 
made, then move to that state (with complete certainty, with probability 1).  Detailed 
balance could be used to specify all the transition probabilities, but the problem with this 
scheme is that it again requires us to specify all transition probabilities beforehand; it is 
not a just-in-time approach.  An algorithm that makes full use of detailed balance was 
developed by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953.  This truly 
seminal work represents one of the first applications of stochastic computational 
techniques to the treatment of deterministic physical problems. 

The idea of the Metropolis scheme is to select new states according to any 
convenient transition probability matrix (called the underlying transition matrix), but not 
to accept every state so generated.  Instead, each state is accepted with a probability that 
ensures that the overall transition probability is, via detailed balance, consistent with the 
desired limiting distribution.  The acceptance probabilities are evaluated only when the 
acceptance question arises, so only those needed are computed.  The overall transition 
probability depends on the transition probability of the underlying matrix, and the 
acceptance probability.  Within this framework, and even for a given underlying 
transition matrix, there are many ways to formulate the overall transition probabilities.  
The Metropolis method represents one choice.  At a given point in the Markov chain, let 
the present state be state i.  The recipe is: 

• With probability tij, choose a trial state j for the move 

• If pj > pi, accept j as the new state, otherwise accept state j with 
probability c = tjipj/tijpi.  This is accomplished by selecting a random 
number R uniformly on (0,1); acceptance occurs if R < c .   



• If the trial state (j) is rejected, the present state (i) is retained and is taken 
as the next one in the Markov chain.  This means that the transition 
probability pii is, in general, nonzero. 

What are the transition probabilities for this algorithm?  We can write them as follows 

  (1.5) 

We can examine these against the detailed balance criterion 

  

Regardless of whether c is greater or less than unity, this can equation becomes 

  

Upon insertion of the definition of c, this equation becomes an identity and detailed 
balance is verified. 

The original formulation of this algorithm by Metropolis et al. is based on a symmetric 
underlying TPM, such that tij = tji, but this restriction is not necessary if one is careful to 
account for the asymmetry when formulating the acceptance criterion.  Very efficient 
algorithms can be developed by exploiting this degree of flexibility. 

Markov chains and importance sampling 

 Before we turn to the application of Markov chains and the Metropolis method to 
molecular simulation, let us finish this topic by returning to the simple example we used 
previously to introduce the concepts of Monte Carlo integration and importance 
sampling.  Illustration 3 contains our prototype of a two-dimension region R having non-
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trivial shape.  The formula for the mean-square distance of each point in R from the 
origin can be given  by an integral over the square region V that contains R, with a 
switching function that sets the integrand to zero for points outside R 

  

We will look at two methods for evaluating this integral with Markov-based importance 
sampling.  In method 1 we take the weight p1 for our importance-sampling formulation to 
be  
  (1.6) 

where q1 is a constant that ensures that p1 is normalized over V.  With this choice the 
integral transforms as follows 

  

This result tells us something that we might have guessed at the outset, namely that we 
can evaluate the mean square distance by summing values of r2 for points generated 
uniformly inside of R.  In a moment we will consider how Metropolis sampling 
prescribes the means to generate these points.  But first, it is of interest to consider an 
alternative importance-sampling scheme.  It could make sense to weight the sampling 
even more toward the region of importance to r2, and choose  
  (1.7) 

This choice works too, but in with a less obvious formulation 

  

With points generated via a Markov chain with limiting distribution given by Eq. (1.7), 
we sum the reciprocal of r2, and then at the end take the reciprocal of the average to 
obtain the desired average.  As we see, in reaching too far in our importance scheme, we 
end up outsmarting ourselves.  The important part of this reciprocal-average is just the 
opposite of the region we are now emphasizing.  Nevertheless, the performance of this 
approach is comparable to that obtained by the first importance scheme we examined.   

The Metropolis algorithm can be applied to each of these formulations.  With it 
we proceed as follows 

(1) Given a point in the region R, generate a new point in the vicinity of it.  For 
convenience let this nearby region be defined as a square centered on the current point.  
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Importantly, the size of the square is fixed, and does not depend on the position of the 
point in R.  Thus the new (x,y) coordinate is 
  

where d is a parameter defined the size of the local region for stepping to a new point and 
rand(-1,1) is a random number generated uniformly on (-1,1) (generating separate values 

for the x and y displacements).  See Illustration 4. 

 

(2) Accept this new point with probability .  Thus, for the first method 
described above 

  

It is very fortunate that the normalization constant dropped out of the acceptance 
criterion, as it is often a highly nontrivial matter to determine this constant.  Thus our 
acceptance decision is as follows 

• Method 1:  accept all moves that leave the state inside R, reject all attempts to 
move outside R 
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• Method 2: reject all trials that attempt to move outside R; if the move stays within 

R, accept it with probability , which obviously gives preference 

to the points more distant from the origin 

There is an important point to be emphasized in this example.  The underlying transition 
probability matrix is set by the trial-move algorithm, in which a new point is generated in 
a square centered on the original point.  Since the size of this square is independent of the 
position of the current point,  underlying trial matrix is symmetric—the probability of 
selecting a point j from i is proportional to 1/A, where A is the area of this square 
displacement region.  Requiring A to be the constant ensures that tij = tji.  It is tempting 
to introduce an efficiency in the algorithm, and to pre-screen the trials points so that they 
do not generate a Metropolis trial that falls outside of R.  As shown in Illustration 5, this 
has the effect of making A smaller for points closer to the boundary, and thus makes the 
underlying transition-probability matrix asymmetric.  The net result is that the boundary 
points are underrepresented in the Markov chain, and the ensemble average is skewed 
(i.e., incorrect).  It is important that rejected trials be included in the Markov chain, i.e., 
pii is not zero, but is given by Eq. (1.5). 

 

As our final topic of this section, we will hint at one of the limitations of importance 
sampling methods that will occupy much of our attention later.  What if we want the 
absolute area of the region R, and not an average over it?  Formally, this can be given by 
an integral over V 
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As before, it would be good to apply importance sampling to this integral, particularly if 
the area of R is much smaller than the area of V.  Proceeding as before, let the importance 
weight be given by Eq. (1.6), p1 = s/q1.  Then  
  

Unlike before, we now do need to know the normalization constant q1, but the integral 
that gives this constant is exactly the integral that we are trying to evaluate!  The lesson 
here is that absolute integrals can be very hard to evaluate by Monte Carlo methods, and 
importance sampling, by itself, does not rescue us from this difficulty. 
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