
Long-Range Forces 

Truncating the potential 

When presenting hard-sphere molecular dynamics we introduced the use of periodic 
boundaries as a means to model a bulk phase without walls.  We examined the minimum-
image convention, but only in the context of identifying collision pairs.  Because the 
hard-sphere potential is very short-ranged, we were able to avoid the issue of how to treat 
interactions with atoms that do not lie in the minimum-image shell.  But more realistic 
potentials are of sufficiently long range that interactions with second-nearest and even 
more distant images cannot be neglected.  However, it is not feasible, and fortunately it is 
not necessary, to sum the interactions an atom has with all these far-away replicas of the 
atom nearest to it.  In fact in many cases it is disadvantageous to include interactions even 
with some nearest-image atoms.  The reason is described in Illustration 1.  The yellow 
square depicts the nearest-image region about the purple atom at its center.  Note that the 
green atom to the right of the central atom is a nearest-image atom, while its (green) 
image in the box to the left is more distant, and the interaction of the central atom with it 
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is neglected.  However, both this second-image atom and the black atom (representing an 
entirely different atom) in the corner of the nearest-image region are equally  distant from 
the central atom.  So if all nearest-image interactions with the central atom were included, 
there would be an inequity, in that two equally distant atoms would be contributing 
differently to the total interaction.  This situation complicates the application of any 
adjustment that corrects for all the neglected distant-image interactions.  Consequently it 
is better to neglect all such unequal interactions, even if they are with nearest images.  
The problem arises only with interactions more distant than half the length of the 
simulation box, so the interatomic potential should be truncated at this distance, or less. 

Truncating the interactions introduces a discontinuity in the potential, which corresponds 
to an infinite (impulsive) force acting between atoms that cross the discontinuity.  
Unfortunately, MD algorithms for soft potential are ill equipped to deal with this force 
correctly, and consequently it gets neglected.  The error is manifested by poor energy 
conservation in the simulation.  One possible remedy is to shift the whole potential up by 
the amount of the discontinuity, thereby bringing the energy to zero at exactly the 
trunction point.  In equation form 

  

where  is the truncation distance.  This remedy helps, but it doesn’t go far enough.  The 
potential, while not infinite at the truncation point, is discontinuous.  To remedy this, the 
force to can be shifted to zero , now through the application of a term linear in the 
distance, thus 
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The shifted-force potential represents a larger perturbation on the overall potential.  The 
effect of the  shifted and shifted-force alterations are demonstrated on the LJ model in 
Illustration 2.  Note that the shifted/shifted-force modifications of the potential are not 
normally applied in MC simulations, since energy conservation is not an issue there.   

Radial distribution function 

One modeling approach takes the potential- and force-shifting as the end of the story, in 
that the model defines interactions to be zero beyond the cutoff, so there is nothing to be 
done with them.  In quantitative modeling, however, such a radical departure from real-
atom behavior is inappropriate, and something must be done to correct for the neglected 
interactions.  Statistical mechanics provides formulas that tell us, for example, how much 
two model atoms separated by 15 Angstroms will contribute to the internal energy, or to 
the pressure. The hard part is establishing just how many pairs of molecules will be found 
at a particular separation. We know that at sufficiently large separations the molecules are 
uncorrelated, and the number of pairs at each separation is well described by a simple 
application of probability. This limiting behavior is the key to formulating a correction 
for the neglected long-range interactions, the so-called long-range correction . We 
assume that the limiting behavior holds for all separations beyond the point where the 
interactions are truncated. This assumption leads to simple analytic formulas for the long-
range correction to almost any thermodynamic quantity of interest.  

Before turning to those formulas it is worthwhile to examine the radial distribution 
function (rdf).  The rdf is a key quantity in statistical mechanics because it characterizes 
how the atom correlations decay with increasing separation.  The rdf is defined as follows 
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The numerator is the number of atoms found in a volume element dr a distance r from a 
given atom (see Illustration 3), while the denominator is the same quantity for an ideal 
gas, a system with no atom correlations at all.  The ideal gas term is independent of r and 
is simply the number density 

  

Java code for computing the rdf in a pure substance (non a mixture) is presented in 
Illustration 4.  This facility is included in the API as a subclass of MeterFunction.  
Illustration 5 contains an applet that presents the rdf computed during a simulation.  

The radial distribution function for the hard-sphere model at two densities is presented in 
Illustration 6.  The rdf for more realistic models exhibits the same qualitative behavior as 
that in the illustration, except the behavior near the contact value is not so sharp, 
reflecting the softer repulsion exhibited by real atoms.  Note the prominent structure 
present at high density, and the lack of almost all correlation at low density.  For both 
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//Method in public class MeterRDF extends MeterFunction 
//Computes RDF for the current configuration 
public double[] currentValue() { 
    iterator.reset();                          //prepare iterator of atom pairs 
    for(int i=0; i<nPoints; i++) {y[i] = 0.0;} //zero histogram 
    while(iterator.hasNext()) {                //loop over all pairs in phase 
        double r = Math.sqrt(iterator.next().r2()); //get pair separation 
        if(r < xMax) { 
            int index = (int)(r/delr);         //determine histogram index 
            y[index]+=2;                       //add once for each atom 
        } 
    } 
    int n = phase.atomCount();                 //compute normalization: divide by 
    double norm = n*n/phase.volume();          //n, and density*(volume of shell) 
    for(int i=0; i<nPoints; i++) {y[i] /= (norm*vShell[i]);} 
    return y; 
} 



densities, at sufficiently large separations the distribution approaches unity, reflecting the 
loss of correlation between distant atoms.  It is atom pairs in this range of separation and 
beyond that can be neglected in a molecular simulation.  Their influence can be 
represented instead by formulas such as the following, for the potential energy,  

  

pressure,  

  

and chemical potential 

  

For example, for the LJ model the energy and pressure corrections are 

  

  

For a cutoff of about 2.5 s, these corrections make up about 5-10% of the total energy 
and pressure, depending on density. 

Sometimes these corrections can be added to the simulation averages upon completion of 
the simulation, but at other times it is important to include the corrections during the 
course of the simulation. For example, the long-range correction to the energy depends 
on the density, so its contribution to the energy change must be included when deciding 
acceptance of volume moves in NPT MC simulation.  We think it is a good habit to 
include them at all points in simulation, since doing so has negligible computational cost. 

Coulombic interactions 

Long-range electrostatic interactions must be treated in a more sophisticated way than 
that used for van der Waals attraction.  The Coulomb potential vanishes as 1/r, which is a 
much slower decay than the 1/r6 dispersion interaction characterized by the LJ model 
potential. Representative curves are shown in Illustration 7.  Whereas the LJ model can 
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quite reasonably be truncated at about 2.5 LJ diameters, the Coulomb potential is at 5 LJ 
diameters nowhere near approaching zero.  Moreover, a naïve application of the long-
range correction to the energy yields 

  

The influence of the potential never vanishes, and it is only upon adding the positive and 
negative infinities, arising from the interactions of like and unlike charges, does a finite 

energy result.   

So it should be clear that the treatment of long-range electrostatic interactions must be 
performed with great care.  We will consider two common approaches.  One is to 
perform a full lattice sum, using clever techniques to enhance the convergence; another is 
to model the surroundings as a dielectric continuum that responds to fluctuations in the 
simulated system.  The former method is known as the Ewald sum, and we will examine 
it first.  Before doing so it is worthwhile to review some of the important elementary 
methods and concepts related to the problem and its solution. 

Fourier series 

The periodicity inherent in the lattice sum makes it amenable to application of Fourier 
techniques.  Accordingly, the Ewald method makes use of a Fourier series.  Let’s review 
discrete Fourier analysis in simpler context before seeing how it is applied in the Ewald 
sum. 
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Consider a periodic function f(x) of period L, such as that exhibited in Illustration 8.  A 
Fourier series provides an equivalent representation of this function through a set of 
coefficients an and bn 

  

where the coefficients are  

  

These relations can be written more compactly using complex numbers, replacing the 
sine and cosine terms by a complex exponential, using , where 

.  Then 
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where the coefficients are represented by the real and imaginary parts of  

  

which leads to 

  (1.2) 

 

As an example, let us consider the square wave shown in Illustration 9.  Over the period 
centered on the origin, the function is 

  

So the transform is 
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The real part of  is always zero, indicating that the ak coefficients are zero; this 
happens because the function f(x) is odd (i.e., f(-x) = -f(x)) and consequently it cannot 
have any cosine components in its Fourier decomposition.  Thus the Fourier series 
representation of the square wave is simply 

  

This series, truncated after the first few terms, is presented in Illustration 10. 
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It is of particular interest to examine the behavior of the transform function .  
Illustration 11 presents the bk coefficients for the square-wave example.  Unlike the 
original function of x, which persists without decay for arbitrarily large x, this function of 
k approaches zero over a finite range of k.  It does so while retaining complete 
information about the original function.  By working in this alternate representation, we 
can work with the infinite ranged function of x by doing operations on the finite-ranged 
function of k.  This idea is used by the Ewald method to account for the long-ranging 
influence of all the periodic images of the simulated atoms. 
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Let us think now about the rate of convergence of the coefficient function.  Note that a 
simple, smooth sine-wave function f(x) is, quite obviously, represented in Fourier space 
by a single coefficient.  See Illustration 12.  This is a particularly simple example of a 
general feature of the Fourier transformation.  A smooth periodic function of infinite 
range transforms into a very sharp, short ranged function in the Fourier representation.  
On the other hand, a very sharp, rapidly changing function f(x) transforms into a very 
long-ranged, slowly decaying Fourier-space function.  Some of this behavior was in 
evidence in the square-wave example, where the sharp features of the square wave 
require a significant high-frequency (large k) Fourier component (dying off as 1/k).  This 
general interpretation of the Fourier transform is important to keep in mind.  The small-k 
parts of the transform describe the long-wavelength, low-frequency components of the 
original function (culminating at k = 0, which coefficient gives the simple average of the 
function f(x)).  The large-k parts collect all the high-frequency components, which will 
be small for a smooth function of x.    
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The Fourier transform is obtained as the limiting behavior of the Fourier series as the 
period L becomes infinite.  In the limit the series representation becomes an integral 

  

The expression for  is the same, but for modification to the limits of integration 

  

and we write  instead of  to indicate that the transform variable is continuous in 
the limit of infinite period. 

The Fourier transform exhibits many useful properties.  One is in regard to the Fourier 
transform of the derivative of a function, which is simply related to the transform of the 
function itself 

  

where  is the mth derivative of f with respect to x.  We will make use of this 
relation shortly. 

Before returning to the Ewald sum, which motivates this discussion, let us consider one 
more example.  Consider a function f(x) of Gaussian form 

  

It turns out that the Fourier transform of this function is also a Gaussian 

  

Note that the width (variance) of the transform function is the reciprocal of the width of 
the original function.  This is consistent with our earlier observation that a sharply peaked 
function transforms to a broad, slowly decaying function, and vice versa.  As a limiting 
case, if the original function f(x) is actually a Dirac delta function 

  

then it is easy to see that the transform is 
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that is, an infinite-ranged sine/cosine function of wavelength xo.  

Basic electrostatics 

A point charge q1 in an electric field E(r) experiences a force given by 

  

The electric field is in turn created by the presence of other charges, distributed according 
to the charge density r(r).  The fundamental equations of electrostatics dictate how the 
field is determined from the charge density 

  (1.3) 

The latter equation can be satisfied automatically if the field is expressed as the gradient 
of a scalar  potential 

  

This electrostatic potential f represents a potential energy, in the sense that it is the 
energy required (in the form of work) to bring a unit charge from infinity to r.  With E 
expressed in this manner, the relation between the electrostatic potential and the charge 
density follows from Eq.  (1.3)  

  (1.4) 

This is Poisson’s equation.  If r(r) is a simple point charge q2, solution of Poisson’s 
equation finds that the potential of a test charge q1 varies inversely with the distance r 
from q2  

  

which is Coulomb’s law.  We note that this result holds only in a three-dimensional 
space.  In two dimensions, the potential varies as ln(r), while in 1D it increases linearly 
with the separation!  A very long-ranged interaction indeed. 

Ewald sum 

The aim of the Ewald method is to perform a sum of the interaction energy of each 
charge in the simulation cell with all other charges in the cell, and with all periodic 
images of all charges in the cell.  The method proceeds by developing an expression for 
the electric field E(r) due to all charges and their images.  This field is evaluated at each 
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point where a charge is located in the simulation cell, thereby obtaining the contribution 
of that charge to the total potential energy.  Because the charge images—and thus the 
charge density—is periodic, Fourier methods are appropriate for evaluating the electric 
field due to them.  However, the charge density is a very sharply varying function, 
consisting of delta-function spikes at each charge image, and this prevents the Fourier 
transform from decaying at large frequencies.  To remedy this, the point charges are 
approximated as Gaussian charge densities (other forms are possible), thereby making for 
convergent Fourier sums.  This step introduces an error that is best removed by 
performing a rapidly converging sum in real space.  Let us now consider the Ewald 
method in more detail. 

The charge density due to all the point charges in the simulation cell, and all their images, 
is 

  

For cubic periodic boundary conditions, the lattice vectors are 

  

that is, each element of the lattice vector may take on a value equal to any integer 
multiple of L, where L is the linear dimension of the simulation cell.  Thus the first few 
lattice vectors are {0,0,0}, {0,0,L}, {0,L,0}, {L,0,0}, {0,0,-L}, {0, -L,0}, {-L,0,0}, 
{0,L,L}…,{0,0,2L}…, etc.  The convergence of the sum depends upon the order in 
which the lattice images are summed. It is necessary to order the terms in a concentric 
fashion, so that terms with larger  are added only after all terms with 
smaller values of |l| have been included.  

The charge density is a periodic function and, just like the square-wave example 
examined above, its full behavior can be captured by applying a Fourier transform over 
just one period, which means in this case over just one simulation cell.  At present we are 
dealing with a three-dimensional function, rather than the simple one-dimensional 
examples used previously, but the results demonstrated there still apply.  The main 
difference is that our transform variables r and k are now vectors instead of the scalars x 
and k used before.  We face a problem now, in that our periodic charge-density is 
composed of (very sharp) delta functions, and consequently its Fourier transform will be 
slowly converging.  In fact it will be a smooth, infinitely periodic function, and we will 
have gained no advantage in the trade from real to Fourier space.  To permit the useful 
application of Fourier techniques, we can approximate the sharp charge densities by less-
sharp Gaussian functions.  We smear the charges.  With this modification, the charge 
density is 
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Here, a is a parameter that adjusts the degree of smearing of the charges.  A small value 
of a causes the charges to be smeared more, while a large a keeps the charges sharply 
defined, approaching the original d-function representation at infinite a. The three-
dimensional Fourier representation of this charge density is also a Gaussian 

  (1.5) 

For cubic periodic boundaries, the k vectors are the same as the l vectors, except instead 
of being formed as multiples of L, they are multiples of 2p/L: k = {0,0,0}, {0,0,+2p/L}, 
etc. 

The electrostatic potential due to this charge density is obtained via Poisson’s 
equation, Eq. (1.4).  First we Fourier transform both sides of the equation.  Using the 
derivative relation reviewed above, the Fourier transform of the Laplacian (a 2nd 
derivative in 3D) can be written as the square of the transform variable times the Fourier 
transform of the function; thus 

  (1.6) 

This with Eq. (1.5) gives the Fourier-space representation of the electrostatic potential 
due to the smeared charges.  The electrostatic energy of all central-image point charges in 
this field is given as follows.  First we write the energy using the real-space potential 

  (1.7) 

which we then write as the inverse of its Fourier form (cf. Eq. (1.1)) 

  

Now with  from Eq. (1.6) 

   

and  from Eq. (1.5), followed by some rearrangement we have 
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  (1.8) 

where we have identified 

  

as the Fourier transform of the original (unsmeared) charge distribution.  We see that the 
smearing has the effect of attenuating the k-space sum in Eq. (1.8), and that smaller 
values of a (more smearing) causes the sum to converge more quickly. 

Equation (1.8) gives the electrostatic energy of the central-cell point charges in the 
electrostatic field generated by smeared charges, both those in the central cell and all 
image cells.  Two corrections are needed.  Note that each charge is interacting with 
smeared versions of all charges in the central cell, including the smeared version of itself.  
See Illustration 13.  We need to subtract this self interaction.  We do this by solving for 
the electric potential due to the smeared charge, and computing the electrostatic energy of 
a charge in the center of this potential.  The potential is given the the solution of 
Poisson’s equation (1.4) for the Gaussian charge density 
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The solution is 

  

which can be verified by inserting it back into Poisson’s equation, and noting that 
 (in three dimensions; all of this development must be modified if 

applied in other than a 3D space). The charge at the center, r = rj, experiences a field 
, so its (inappropriate) contribution to the electrostatic energy is 

.  This value is independent of position, and depends only on the magnitude 
of the charge.  Thus to apply a coorection to the total electrostatic energy in Eq. (1.8), we 
subtract this self-interaction term for all charges 

  

We must now correct for the use of the smeared charges in determining the electrostatic 
potential.  We can do this by adding the correct potential and subtracting the approximate 
one.  We can do this effectively by staying in real space, because the difference between 
the potentials decreases rapidly with increasing distance from the charge centers, even 
though neither potential by itself does.  The correction is 

  

The full correction is obtained by summing the interactions of each charge in the central 
cell with the field correction terms due to all charges in the central cell and all image 
cells.   
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where we require i ¹ j in the central image only.  The rate at which the potential 
difference vanishes with distance from the each charge center is affected by the 
parameter a.  However, the effect is opposite that on the Fourier sum—the potential 
difference vanishes most rapidly for large a.  Thus the combination of the Fourier sum 
and the smearing correction requires a compromise in the choice of a.  A good rule-of-
thumb is to choose a = 25/L2, but testing is recommended in each circumstance to 
determine an appropriate value.  

The total electrostatic energy due to the interaction of the point charges is  

  

As indicated, each term depends on the parameter a, but the sum does not.  Collecting the 
results, we have 

  (1.9) 

The sum of these terms is independent of a only if sufficient terms are included in the 
lattice sums. In practice a is chosen to permit the real-space sum to converge within the 
central simulation cell, often attempting to limit its range even further, so that it may be 
truncated at the same point that the van der Waals (e.g., Lennard-Jones) contributions are 
neglected.  Attenuating the real-space part this way increases the number of terms 
required in the k-space sum; something of the order of 100-200 vectors are usually 
needed there to get acceptable convergence. 

We have glossed over a subtle but important point in the development.  The k = 0 
contribution to Eq. (1.8) describes the interaction of each central charge with the infinite-
wavelength features of the electrostatic potential.  Even though the system is modeled as 
being periodic forever in every direction, the infinite-wavelength features persist (by 
definition) over this infinite range.  In principle there exists a boundary at some point, 
and the nature of the surrounding system can influence the infinite-wavelenght features of 
the potential.  If the surrounding medium is a perfect conductor, it will respond in a way 
that exactly offsets any infinite-wavelenth features of the electrostatic potential of the 
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simulated system.  This corresponds to a neglect of the k = 0 term in the Ewald sum, as 
we have done in Eq. (1.9).  We give a more thorough explanation for this effect later, 
explaining how to implement different choices of the boundary. 

It is notable that much of the complication of the Ewald method comes from the use of 
point charges to model the electrostatic interactions.  Other choices are possible.  It would 
not be inappropriate to use a model in which the charges are at the outset smeared 
Gaussians.  In this case there would be no need to apply the real-space correction.  
However, the development would be complicated by the need to evaluate the interactions 
of the central-cell smeared charges with the electrostatic potential due to the central- and 
image-cell charges. This requires that Eq. (1.7) be rewritten as a sum of integrals. 
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