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This would be a good time to outline what 
we’ve learned so far
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• Time-independent Schrödinger equation governs the behavior 
of atoms and molecules:

• Our aim is to quantify the PES
– expectation energy as a function of nuclear positions: ⟨E⟩(Q(M))

• Pauli principle requires antisymmetric ψ: ψ(τ1, τ2) = -ψ(τ2, τ1)
– Slater determinant is one way to do this

• Energy expectation for Slater determinant is a sum over 
orbitals of 1- and 2-electron (and NN) terms



Electron spin is a 4th quantity that enters as 
a wavefunction parameter and state
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• Wavefunction parameter, τ = (x, y, z, s) = (r, s)
– Electron spin is discrete and has two possible values, ±½
– Physically represents an angular-momentum projection, but (non-

relativistic, no magnetic field) Hamiltonian does not depend upon it

• Wavefunction state
– Full wavefunction comprises coordinate and spin components
– Spin quantum number is labeled ms = ±½
– Spin quantum states are labeled α and β 
– Most important in connection to the Pauli principle



Take care to distinguish between spin 
parameter and spin state
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• Spin parameter s = ±½ (or ↑,↓) is akin to spatial coordinate r

• Full electron state combines spatial and spin components

– α(+½) = 1; α(-½) = 0; β(+½) = 0; β(-½) = 1
– 𝜑 is a “spin orbital”

• Bracket includes sum over spins if spin orbitals are averaged

– Wavefunctions are orthogonal if spin states are different

where σ = α or β 
Separation of orbital  into 
product of spatial and spin 
wavefunctions is an excellent 
approximation



For a 2n-electron system: n spatial orbitals, each 
with 2 spin states, provides a full set of orbitals
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Considering spin state, up to two electrons 
can occupy the same spatial orbital 
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s: ℓ = 0; mℓ = 0 à 2 spin orbitals
p: ℓ = 1; mℓ = -1, 0, 1 à 6 spin orbitals
d: ℓ = 2; mℓ = -2, -1, 0, 1, 2 à 10 spin orbitals
f: ℓ = 3; mℓ = -3,-2,-1,0,1,2,3 à 14 spin orbitals

1   2     1   2   3   4   5    6   7   8   9   10  1   2    3   4   5   6

1   2   3   4   5    6   7   8   9   10  11  12 13 14 



Energy expectation for Slater wavefunction is 
sum of 1-e terms and electron repulsion integrals

7

• ERIs include Coulomb and exchange

• Total energy obtained by adding NN Coulomb sum

Mulliken form

Coulomb

Exchange

Spin orbitals



The variational principle provides a powerful 
tool for estimating the wavefunction
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• The lowest eigenvalue of the Hamiltonian defines the ground-
state energy, E0

• The variational principle says that the expectation value of E for 
any normalized wavefunction f is bounded from below by E0:

• We can guide estimation of the true wavefunction ψ by using 
any degrees of freedom in f to minimize 

equality achieved when f ≡ ψ 



An an example of the variational principle, use 
a Gaussian to estimate the 1s hydrogen orbital
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• Normalized wavefunction estimate:

• Hamiltonian:
• Expectation energy: 

atomic units

Compare to E = -½ (exact)



Another demonstration of the variational 
principle arose in HW1 application to PiaB
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Hartree-Fock theory applies the variational 
principle to the Slater-determinant energy
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• Express energy in terms of 1- and 2-electron integrals

• Introduce Coulomb and exchange operators to isolate 
dependence on orbitals

• Minimize ⟨E⟩ wrt orbitals with orthonormality constraint

• Form as a new eigenvalue expression

• Solve numerically to obtain self-consistent result



The Coulomb operator averages interaction 
with the electron density of all orbitals
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Coulomb operator acting on 𝜑i,  

Functional of 𝜑i

Function of τ1 



The exchange operator is defined in a 
similar fashion
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Exchange operator acting on 𝜑i,  

Functional of 𝜑i

Function of τ1 



The next step is to express the energy in 
terms of these operators, and minimize it 
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• Find set of 𝜑i that minimize this energy

• But we need to do this while keeping the 𝜑i orthonormal

• Constrained functional minimization w.r.t. 𝜑i
• Use Lagrange multiplier

– Unconstrained minimization of Lagrange function 
Orthonormality constraint; 
this equal to zero

Lagrange multipliers; additional optimization variables



Constrained functional minimization of the 
energy yields the Hartree-Fock equation
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• HF equation:

•    is the Fock operator

• The eigenfunctions of 𝜑i provide the minimum expectation 
energy via

• Remember though that     and     both depend on the 𝜑i    

– Requires self-consistent solution



Let’s do a calculation of the electron-
repulsion integrals
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• Use the Slater-type orbitals (STO) as a basis

• Compute the integrals

• Compare to literature
for some set of orbitals

• More in next class…

1.Kumar, A. & 
Mishra, P. C. 
Evaluation of one-
centre electron 
interaction integrals 
over slater type 
atomic orbitals. 
Pramana 29, 385–
390 (1987). 



Suggested Reading/Viewing
• Autschbach Sec. 3.4, 8.1, 8.2
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