### Lecture 5 Hartree-Fock Theory

Spin; variation principle; Coulomb and exchange operators; Hartree-Fock theory; an in-class exercise

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo



© 2024 David Kofke

# This would be a good time to outline what we've learned so far

- Time-independent Schrödinger equation governs the behavior of atoms and molecules:  $\hat{H}\psi = E\psi$   $\hat{H} = -\frac{\hbar^2}{2m_e}\nabla^2 + V(r)$
- Our aim is to quantify the PES

   expectation energy as a function of nuclear positions: (E)(Q<sup>(M)</sup>)
- Pauli principle requires antisymmetric ψ: ψ(τ<sub>1</sub>, τ<sub>2</sub>) = -ψ(τ<sub>2</sub>, τ<sub>1</sub>)
   Slater determinant is one way to do this
- Energy expectation for Slater determinant is a sum over orbitals of 1- and 2-electron (and NN) terms

## *Electron spin* is a 4<sup>th</sup> quantity that enters as a wavefunction parameter and state

- Wavefunction parameter,  $\tau = (x, y, z, s) = (\mathbf{r}, s)$ 
  - Electron spin is discrete and has two possible values,  $\pm \frac{1}{2}$
  - Physically represents an angular-momentum projection, but (non-relativistic, no magnetic field) Hamiltonian does not depend upon it
- Wavefunction state

3

- Full wavefunction comprises coordinate and spin components
- Spin quantum number is labeled  $m_s = \pm \frac{1}{2}$
- Spin quantum states are labeled  $\alpha$  and  $\beta$
- Most important in connection to the Pauli principle

### Take care to distinguish between spin parameter and spin state

- Spin parameter  $s = \pm \frac{1}{2}$  (or  $\uparrow,\downarrow$ ) is akin to spatial coordinate *r*
- Full electron state combines spatial and spin components

 $\varphi(\tau) = \phi(\mathbf{r})\sigma(s)$  where  $\sigma = \alpha$  or  $\beta$ 

- $\alpha(+\frac{1}{2}) = 1; \alpha(-\frac{1}{2}) = 0; \beta(+\frac{1}{2}) = 0; \beta(-\frac{1}{2}) = 1$
- $-\varphi$  is a "spin orbital"

- Separation of orbital into product of spatial and spin wavefunctions is an excellent approximation
- Bracket includes sum over spins if spin orbitals are averaged
   ⟨φ<sub>i</sub>|φ<sub>j</sub>⟩ = ∑<sub>s=±1/2</sub> ∫ d**r**φ<sup>\*</sup><sub>i</sub>(**r**)φ<sub>j</sub>(**r**)σ<sub>i</sub>(s)σ<sub>j</sub>(s) = ⟨φ<sub>i</sub>|φ<sub>j</sub>⟩δ<sub>σ<sub>i</sub>σ<sub>j</sub></sub>
   - Wavefunctions are orthogonal if spin states are different

# For a 2*n*-electron system: *n* spatial orbitals, each with 2 spin states, provides a full set of orbitals

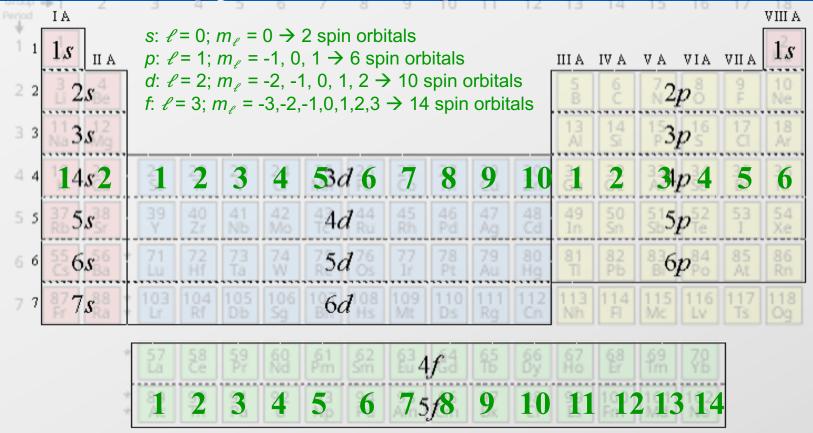
 $\alpha\beta[x_{]} := MatchQ[x, \alpha | \beta]$ Add to MyBraKet.nb Introduce spin  $N\alpha\beta[x ] := ! \alpha\beta[x]$ BraCKet[{ $f_?$  (N $\alpha\beta$ ) [ $x_]$   $q_$ },  $A_[x_]$ , { $g_?$  (N $\alpha\beta$ ) [ $x_]$   $r_}] :=$  $BracKet[{f[x]}, A[x], {g[x]}] \times BraKet[{q}, {r}]$ BraCKet[{f\_? (Ναβ) [x\_] i\_? (Ναβ) [y\_] q\_}, A\_[x\_, y\_], {g\_? (Ναβ) [x\_] h\_? (Ναβ) [y\_] r\_}] := BraCKet[{ $f[x] \times i[y]$ }, A[x, y], { $g[x] \times h[y]$ }] × BraKet[{q}, {r}] Slater determinant Energy expectation  $[1598]:= Clear[\psi, M]$ [1605]:= **@**[tau\_List] := nM = 2; (\* number of electrons; this should be even,  $\mathsf{With}\Big[\{\mathsf{n} = \mathsf{Length}[\mathsf{tau}]\}, \frac{1}{\mathsf{Sqrt}[(\mathsf{n})!]} \mathsf{Det} \\ \mathsf{Pranspose} \\ \mathsf{Flatten}[\mathsf{Table}[\phi_1[\mathsf{tau}[j]]] \\ \sigma[\mathsf{tau}[j]], \{\sigma, \{\alpha, \beta\}\}, \{\mathsf{i}, \mathsf{nM}/2\}, \{\mathsf{j}, \mathsf{nM}\}], 1]\Big]$ to ensure it equals the number of spin-orbitals \*) tauList = Range[nM] nM = 4; 4 electrons 1-electron contribution tauList = Range[nM] М = М = Transpose[ nM = 4; Transpose@Flatten[Table[ $\phi_1$ [tauList[j]]]  $\sigma$ [tauList[j]], { $\sigma$ , { $\alpha$ ,  $\beta$ }}, 2-electron contribution Flatten[Table[\$\phi\_i[tauList[j]]] \$\sigma[tauList[j]]]\$ tauList = Range[nM]; {i, nM/2}, {j, nM}], 1]; MatrixForm@M (\* Just to see what M looks like \*) (\* do just one term in Hamiltonian \*)  $\{\sigma, \{\alpha, \beta\}\}, \{i, nM/2\}, \{j, nM\}], 1]];$  $\psi = \Phi[tauList];$ BraCKet  $[\{ \Phi[tauList] \}, -[1, 2], \{ \Phi[tauList] \} ];$ MatrixForm@M (\* Just to see what M looks like \*) BraKet[{ $\psi$ }, { $\psi$ }] /. orthonormalRule (\* do just one term in Hamiltonian \*) % //. orthonormalRule // Simplify  $\psi = \frac{1}{Sqrt[nM]}$  Det[M] // Expand BraCKet[{ $\psi$ }, h[1], { $\psi$ }]; % //. mullikenFormRule % /. orthonormalRule  $\frac{1}{6} \left( \left\langle \phi_1 \left[ 1 \right] \phi_1 \left[ 2 \right] \middle| \frac{1}{r} \left[ 1, 2 \right] \middle| \phi_1 \left[ 1 \right] \phi_1 \left[ 2 \right] \right\rangle + 2 \left\langle \phi_1 \left[ 2 \right] \phi_2 \left[ 1 \right] \middle| \frac{1}{r} \left[ 1, 2 \right] \middle| \phi_1 \left[ 2 \right] \phi_2 \left[ 1 \right] \right\rangle - \left\langle \phi_1 \left[ 2 \right] \phi_2 \left[ 1 \right] \middle| \frac{1}{r} \left[ 1, 2 \right] \middle| \phi_1 \left[ 2 \right] \phi_2 \left[ 1 \right] \right\rangle + 2 \left\langle \phi_1 \left[ 1 \right] \phi_2 \left[ 2 \right] \middle| \frac{1}{r} \left[ 1, 2 \right] \middle| \phi_1 \left[ 2 \right] \phi_2 \left[ 1 \right] \right\rangle + \left\langle \phi_1 \left[ 1 \right] \phi_2 \left[ 2 \right] \right\rangle + \left\langle \phi_2 \left[ 1 \right] \phi_2 \left[ 2 \right] \middle| \frac{1}{r} \left[ 1, 2 \right] \middle| \phi_2 \left[ 2 \right] \right\rangle \right) \right\rangle$ BraKet[{ $\psi$ }, { $\psi$ }] //. orthonormalRule % /. noDummiesRule // Simplify ıt[1600]=  $\{1, 2, 3, 4\}$ Spin-orbital #1  $(\alpha[1] \phi_1[1] \alpha[1] \phi_2[1] \beta[1] \phi_1[1] \beta[1] \phi_2[1]$ ut[1602]//Matri  $\alpha[2] \phi_1[2] \alpha[2] \phi_2[2] \beta[2] \phi_1[2] \beta[2] \phi_2[2]$  $\alpha$ **[1]**  $\phi$ <sub>1</sub>**[1]**  $\beta$ **[1]**  $\phi$ <sub>1</sub>**[1]**  $\alpha[3] \phi_1[3] \alpha[3] \phi_2[3] \beta[3] \phi_1[3] \beta[3] \phi_2[3]$ electron #1  $\alpha[4] \phi_1[4] \alpha[4] \phi_2[4] \beta[4] \phi_1[4] \beta[4] \phi_2[4]$  $\alpha[2] \phi_1[2] \beta[2] \phi_1[2]$  $\frac{1}{6}$  ([11|11] + 4 [11|22] - 2 [12|21] + [22|22]) Jt[1603]=  $\frac{\alpha[\texttt{2}] \times \beta[\texttt{1}] \phi_\texttt{1}[\texttt{1}] \phi_\texttt{1}[\texttt{2}]}{\sqrt{2}} + \frac{\alpha[\texttt{1}] \times \beta[\texttt{2}] \phi_\texttt{1}[\texttt{1}] \phi_\texttt{1}[\texttt{2}]}{\sqrt{2}}$  $\frac{1}{24} (12 \langle \phi_1[1] \mid h[1] \mid \phi_1[1] \rangle + 12 \langle \phi_2[1] \mid h[1] \mid \phi_2[1] \rangle)$ 

 $\frac{1}{2} \left( \left\langle \phi_1 \mid h \mid \phi_1 \right\rangle + \left\langle \phi_2 \mid h \mid \phi_2 \right\rangle \right)$ 

rt[1604]=

1 - normalized

## Considering spin state, up to two electrons can occupy the same spatial orbital



### Energy expectation for Slater wavefunction is sum of 1-e terms and electron repulsion integrals

$$\langle E 
angle = \Big\langle \Phi \Big| {\sum_{_i} \hat{h}_i} \Big| \Phi \Big
angle + \Big\langle \Phi \Big| {\sum_{_i < j} \hat{h}_{i,j}} \Big| \Phi \Big
angle$$

• ERIs include Coulomb and exchange

• Total energy obtained by adding NN Coulomb sum  $V_{\rm NN}^{\rm Coul}$ 

# The *variational principle* provides a powerful tool for estimating the wavefunction

$$\hat{H}( au)\psi( au)=\psi( au)E$$

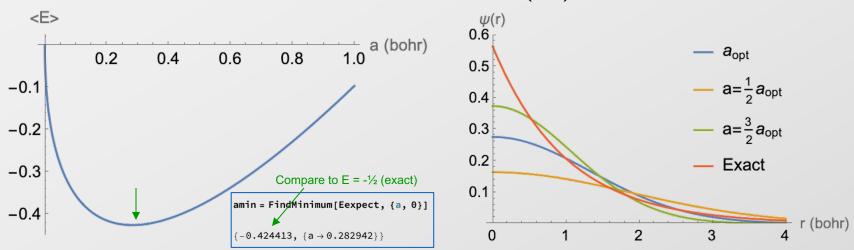
- The lowest eigenvalue of the Hamiltonian defines the groundstate energy,  $E_0$
- The variational principle says that the expectation value of E for *any* normalized wavefunction f is bounded from below by  $E_0$ :

$$\langle E 
angle = \langle f | \hat{H} | f 
angle \geq E_0$$
 equality achieved when  $f \equiv \psi$ 

• We can guide estimation of the true wavefunction  $\psi$  by using any degrees of freedom in *f* to minimize  $\langle E \rangle$ 

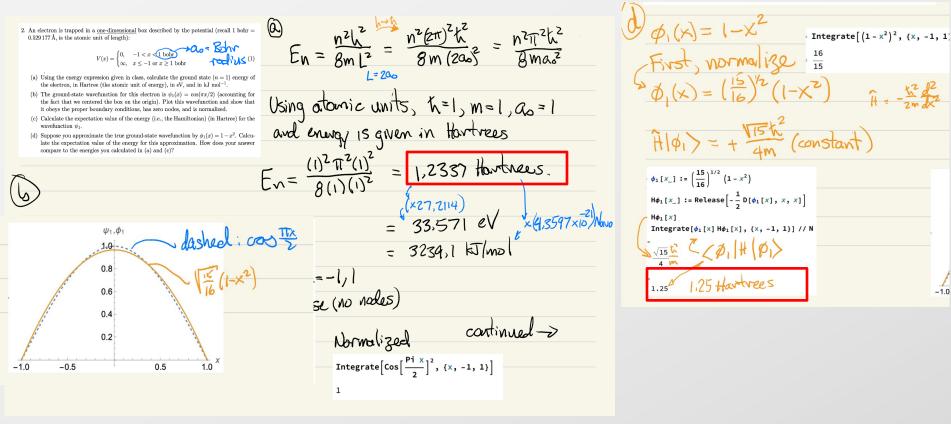
#### An an example of the variational principle, use a Gaussian to estimate the 1s hydrogen orbital

- Normalized wavefunction estimate:  $f(r, \theta \phi; a) = \left(\frac{2a}{\pi}\right)^{3/4} e^{-ar^2}$
- Hamiltonian:  $\hat{H}f = -\frac{1}{2}\nabla^2 f \frac{1}{r}f$ • Expectation energy:  $\langle E \rangle = \frac{3}{2}a - \left(\frac{8}{\pi}\right)^{\frac{1}{2}}\sqrt{a}$   $\frac{|\text{Expect} = \langle f| \text{Hhat}[f] \&}{\frac{3}{2} - 2\sqrt{a}\sqrt{\frac{2}{\pi}}}$



9

# Another demonstration of the variational principle arose in HW1 application to PiaB



# Hartree-Fock theory applies the variational principle to the Slater-determinant energy

• Express energy in terms of 1- and 2-electron integrals

$$\langle E 
angle = \sum_i h_{ii} + rac{1}{2} \sum_{i,j} ([ii|jj] - [ij|ji]) \, ,$$

- Introduce Coulomb and exchange operators to isolate dependence on orbitals
- Minimize (E) wrt orbitals with orthonormality constraint
- Form as a new eigenvalue expression

11

• Solve numerically to obtain self-consistent result

### The Coulomb operator averages interaction with the electron density of all orbitals

$$\begin{split} \langle E \rangle &= \sum_{i} h_{ii} + \frac{1}{2} \sum_{i,j} ([ii|jj] - [ij|ji]) \\ \sum_{j} [ii|jj] &= \sum_{j} \int \int \varphi_{i}^{*}(\tau_{1}) \varphi_{i}(\tau_{1}) \frac{1}{r_{12}} \varphi_{j}^{*}(\tau_{2}) \varphi_{j}(\tau_{2}) d\tau_{1} d\tau_{2} \\ &= \int \varphi_{i}^{*}(\tau_{1}) \sum_{j} \int \frac{1}{r_{12}} \varphi_{j}^{*}(\tau_{2}) \varphi_{j}(\tau_{2}) d\tau_{2} \varphi_{i}(\tau_{1}) d\tau_{1} \\ &= \int \varphi_{i}^{*}(\tau_{1}) \left(\hat{C}\varphi_{i}\right) (\tau_{1}) d\tau_{1} \\ &= \int \varphi_{i}^{*}(\tau_{1}) \left(\hat{C}\varphi_{i}\right) (\tau_{1}) d\tau_{1} \\ &= \langle \varphi_{i} | \hat{C} | \varphi_{i} \rangle \end{split}$$

### The exchange operator is defined in a similar fashion

$$\begin{split} \langle E \rangle &= \sum_{i} h_{ii} + \frac{1}{2} \sum_{i,j} ([ii|jj] - [ij|ji]) \\ \sum_{j} [ij|ji] &= \sum_{j} \int \int \varphi_{i}^{*}(\tau_{1}) \varphi_{j}(\tau_{1}) \frac{1}{r_{12}} \varphi_{j}^{*}(\tau_{2}) \varphi_{i}(\tau_{2}) d\tau_{1} d\tau_{2} \\ &= \int \varphi_{i}^{*}(\tau_{1}) \sum_{j} \int \frac{1}{r_{12}} \varphi_{j}(\tau_{1}) \varphi_{j}^{*}(\tau_{2}) \varphi_{i}(\tau_{2}) d\tau_{2} d\tau_{1} \\ &= \int \varphi_{i}^{*}(\tau_{1}) \left(\hat{X}\varphi_{i}\right) (\tau_{1}) d\tau_{1} \\ &= \langle \varphi_{i} | \hat{X} | \varphi_{i} \rangle \end{split}$$

The next step is to express the energy in terms of these operators, and minimize it

$$\langle E 
angle = \sum_i h_{i,i} + rac{1}{2} \sum_i \langle arphi_i | \hat{C} - \hat{X} | arphi_i 
angle$$

- Find set of  $\varphi_i$  that minimize this energy
- But we need to do this while keeping the  $\varphi_i$  orthonormal
- *Constrained* functional minimization w.r.t.  $\varphi_i$
- Use Lagrange multiplier

14

- Unconstrained minimization of Lagrange function

$$\Omega \equiv \sum_i \langle arphi_i | \hat{h} | arphi_i 
angle + rac{1}{2} \sum_i \langle arphi_i | \hat{C} - \hat{X} | arphi_i 
angle - \sum_{i,j} \Lambda_{i,j} (ig \langle arphi_i | arphi_j 
angle - \delta_{i,j} ig)$$

Lagrange multipliers; additional optimization variables

Orthonormality constraint;

this equal to zero

# Constrained functional minimization of the energy yields the *Hartree-Fock equation*

- HF equation:  $\hat{F}\varphi_i = \varphi_i \varepsilon_i$
- $\hat{F}$  is the Fock operator

 $\hat{F} = \hat{h} + \left(\hat{C} - \hat{X}
ight)$ 

- The eigenfunctions of  $\varphi_i$  provide the minimum expectation energy via  $\langle E \rangle = \sum_i \langle \varphi_i | \hat{h} | \varphi_i \rangle + \frac{1}{2} \sum_i \langle \varphi_i | \hat{C} - \hat{X} | \varphi_i \rangle$
- Remember though that  $\hat{C}$  and  $\hat{X}$  both depend on the  $\varphi_i$  $\hat{C}\varphi_i(\tau_1) = \sum_j \int \frac{1}{r_{12}} \varphi_j^*(\tau_2) \varphi_j(\tau_2) \varphi_i(\tau_1) d\tau_2$   $\hat{X}\varphi_i(\tau_1) = \sum_j \int \frac{1}{r_{12}} \varphi_j(\tau_1) \varphi_j^*(\tau_2) \varphi_i(\tau_2) d\tau_2$ - Requires self-consistent solution

#### Let's do a calculation of the electronrepulsion integrals

• Use the *Slater-type orbitals* (STO) as a basis

$$\phi_{n,l,m}(r, heta,\phi) \equiv rac{1}{\sqrt{(2n)!}} (2\zeta)^{n+rac{1}{2}} r^{n-1} e^{-\zeta r} Y_l^m( heta,\phi)$$
 Table 1. One-centre repulsion integrals.

- Compute the integrals  $\langle arphi_i | \hat{C} | arphi_j 
  angle \ \langle arphi_i | \hat{X} | arphi_j 
  angle$
- Compare to literature for some set of orbitals
- More in next class...

16

| Atoms                               | <b>Orbital</b> <sup>a</sup>                             | Present value<br>(a.u)                                                                                                    | From literature<br>(a.u.)          | Approx.<br>time<br>(sec) |
|-------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|
| Li                                  | (2s2s 2s2s)                                             | 0-289615078125                                                                                                            | 0.289615078125 <sup>b</sup>        | 3                        |
| Н                                   | (1s1s 1s1s)                                             | 0.554843750000                                                                                                            | 0.554843750000                     | 1                        |
| F                                   | $(2p_2 2p_2)(2p_2 2p_2)$                                | $0.241301953125 \times 10^{12}$                                                                                           | 0.241301953125 × 1016              | 3                        |
| Be                                  | (1s1s 1s1s)                                             | $0.386647500000 \times 10^{1}$                                                                                            | 0-386647500000 × 101*              | 1                        |
| Na                                  | (1s1s 1s1s)                                             | $0.954725000000 \times 10^{1}$                                                                                            | $0.954725000000 \times 10^{1^{b}}$ | 1                        |
| н                                   | (1s1s 1s1s)                                             | 0.487687500000                                                                                                            | 0.487687500000                     | 1                        |
| F                                   | (1s1s 1s1s)                                             | $0.494868750000 \times 10^{1}$                                                                                            | $0.494868750000 \times 10^{1^{b}}$ | 1                        |
| Sc                                  | (1s1s 1s1s)                                             | $0.108062500000 \times 10^{2}$                                                                                            | 0.108062500000 × 102b              | 1                        |
| Н                                   | (1s1s 1s1s)                                             | 0.62500000000                                                                                                             | 0.62500000000°                     | 1                        |
| F                                   | $(2p_2 2p_3)(2p_2 2p_3)$                                | $0.101765625000 \times 10^{1}$                                                                                            | 1.01766°                           | 3                        |
| F                                   | (1s2s 2s1s)                                             | 0.146328213305                                                                                                            | 0·14633°                           | 1                        |
| F                                   | $(2p_{2}2p_{1})(2p_{2}2p_{2})$                          | 0.054843750000                                                                                                            | 0.05484                            | 3                        |
| F                                   | $(2s2p_{z} 2s2p_{z})$                                   | 0.208767361111                                                                                                            | 0·20877°                           | 3                        |
| <sup>b</sup> From<br>$i_{2s} = 0.7$ | (Yasui and Saika 19<br>9722 (in LiH), ζ <sub>Be</sub> , | to $m_l = 1$ while z component<br>82) using the following $\xi$ values, = 6.18636 (in BeF <sup>+</sup> ), $\xi_{H_{1,s}}$ |                                    | 165 (in BeF <sup>+</sup> |

1.Kumar, A. & Mishra, P. C. Evaluation of onecentre electron interaction integrals over slater type atomic orbitals. *Pramana* **29**, 385– 390 (1987).

### **Suggested Reading/Viewing**

• Autschbach Sec. 3.4, 8.1, 8.2