Lecture 3

Many-electron systems and the Pauli principle

Potential energy of electrons and nucle1; Born-Oppenheimer

approximation; Hartree product; Pauli exclusion; Slater
determinants

Prof. David A. Kofke
CE 500 — Modeling Potential-Energy Surfaces

Department of Chemical & Biological Engineering
University at Buffalo

University at Buffalo
The State University of New York
© 2024 David Kotke



The potential energy for a system of electrons

and nuclei is a sum of Coulomb terms

* Electrons + nucle1 = (atom, molecule, or molecules)

° Sum of Laplacians applied to each
® .. nuclear and electron coordinate
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Potential is pairwise sum of
Coulomb interactions
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5 In “atomic units”, A, e, 411€,, and m, are each defined to be unity



A system of electrons and nuclei are described

bv a sindle multivariate wavefunction
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* Focus is on solution of Schrodinger equation for electrons in
electrostatic potential of nuclei as fixed in space (“clamped”)

* Then total energy i1s sum of electronic and nuclear terms
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The Born-Oppenheimer approximation separates

electronic and nuclear degrees of freedom
Electronic energy solved for a fixed set of nuclear positions

ES = ENQy,...,Qum) Y™, QWM = o, (7 QM) opp (QP)
Me K MN
Electronic SE: H.¢. = E%,

The dependence of ES' on O™ has the effect of introducing
forces on the nuclei, in addition to their mutual Coulomb forces

Together these forces on the nucler define the adiabatic
potential-energy surface, which governs their motion

— Nuclear motion can be treated classically or quantum mechanically, as a
separate issue



The Hartree product estimates . via a product of

1-electron orbitals. It is incorrect, but instructive
N
Ye(T1, 725+, TN) & H%’(Ti)
1=1

— The ¢; may be H-atom orbitals, but need not be
— They can be selected to attempt to best approximate y,

* This model implies that the probability to find an electron at
position 7; is independent of the positions of the other _*®

electrons, even though they have repulsive interactions ﬂ:f“;*e
P (I N)) = (05 (1)1 (1)) (05 (2) p2(T2))s - - - » (Pl (Tv)on (Tar))
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— This is unrealistic, but there’s a bigger problem...



The Pauli principle imposes a strict

on the wavefunction

 First, swapping the 1dentities of indistinguishable particles
cannot change the probability of the configuration

¥*(1,2)1¥(1,2) =4¥*(2,1)y(2,1) Note: w(1,2) = w(71.1)

 In particular, for electrons (and fermions in general) the ., ., -

Y

wavefunction 1s antisymmetric (Pauli principle) | j
$(1,2) = —(2,1) &

« If 1 and 2 are in the same state, yw(1,2) = w(2,1). In such a ca’se,
both this and the Pauli principle can be true only 1f y(1,2) = 0.

- — Pauli exclusion principle: any 2 electrons must occupy different states



The simple Hartree product does not satisfy the

Pauli principle for indistinguishable particles

* It Note: (1) = ¢(r+)

Pe(L,2,...,N) = p1(1)p2(2) . . . o (V) R
then, if o1 # @2, w, does not satisfy the requirement for

indistinguishable particles: ST

01(D)92(2) - .. on () # 01(2)2(1) - .. o (V) % @

e1(x1, Y1, 21) P2 (T2, Y2, 22) ™

Alternatively, if, p1 = 2, ¥, does not satisty the Pauh
principle
P2(1)p2(2) ... oN(N) # —p2(2)p2(1) . .. o (IN)

o1(x2, Y2, 22)P2(21, Y1, 21)



We can formally define an “antisymmetrizer”

operator to make Hartree product satisfy Pauli

A Alpi1(1)@2(2), - -, on (V)] = —Alp1(2)pa(1), - - -, o (V)]
\ antisymmetrizer operator
— Likewise for exchange of any two labels in product

— Generates a sum of N! terms, so normalization requires a subsequent
division by (N!)? (included with definition of operator)

« How can this be implemented in practice?



A Slater determinant forms an antisymmetric

wavefunction from sums of Hartree products

e Determinant of matrix of 1-electron orbitals

901(1) 902(1) e SON(l)
’(pe ~ (I)(l,Z, 7N) — % @1(2) 902(2)
o1 (N) 0a(N) - on(N)

» Switching labels = switching rows
— A property of determinant is that this will switch sign

, ¢ N!terms - division by v N! means &*® will be normalized



Mathematica can be used to demonstrate

some simple properties of determinants

. 4.03924 4.80404 6.99246 3.87808
nM = 4; 1.59 8.43131 2.25868 1.7121
5.30589 7.81292 9.49763 5.97595
M = RandomReal[10, {nM, nM}]; 1.80622 4.21877 6.29406 2.67081
MatrixFormeM -
Det M -63.8002
e
[ ] //MatrixForm=
(xswap rows 1 & 3x) —» (5.30589 7.81292 9.49763 5.97595]
1.59 8.43131 2.25868 1.7121
- . —> |4.03924 4.80404 6.99246 3.87808
swapping rows changes MI{1, 3}1 = MI{3, 1}1; 1.80622 4.21877 6.29406 2.67081
sign of determinant MatrixFormeM i
Det[M] 63.8102 l
(xswap columns 1 & 3x) O o.49763 7.81292 5.30589 5.97595
2.25868 8.43131 1.59 1.7121
. MIAll, {1, 3}] = M[A1l1, {3, 1}1; 6.99246 4.80404 4.03924 3.87808|
swapping columns changes " 6.29406 4.21877 1.80622 2.67081
sign of determinant bl el L :
Det[M] -63.8002
(xadd half of row 2 to row 3x) //MatrixForm=
9.49763 7.81292 5.30589 5.97595
adding a multiple of one MI3] += 0.5M[2]; ) 28’.215281688 89'.403119371 4.18.3521925 41..773142114
row/column to another does MatrixFormeM 629406 4.2
not change determinant Det [M] S
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Consider Slater determinant for 2-electron,
2-orbital system

o Switch electron labels

B(2,1) = %(gol(z)wz(l) — 22(2)e1(1))
— _&(1,2)

obeys Pauli principle!
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Mathematica can be used to construct a

Slater determinant of orbitals for arbitra

(+» This defines a wavefunction ¢ as a Slater determinant (tl, t2, t3, t4)

tauListO

of nM orbital functions x)

AatrixForm=

(¢1[Tl] ¢2[Tl] ¢3[Tl] ¢Pa[T]
SLLLA R 610t2] ¢2[t2] 63[t2] o4lc2]
nM = 4 M | 611231 620131 65131 ¢a(r3]
. . . ¢1[t4] ¢2[Tt4] ¢3[Tt4] ¢4[T4]
taulist0O = ToExpression["z" <> ToString[#] & /@ Range [nM] ]
M = Table[¢; [tauListO[j]]1, {i, nM}, {i, nM}];
. . LIJ — (¢1[T4] ¢2[T3] ¢3[T2] da[Tl] - P2 [T3] ¢$2[T4] ¢3[T2] ¢4[Tl] -
MatrixForm@M (x Just to see what M looks Llike ) 2.6
Y[tau List] '=W'ith[{n=Length[tau]} M @1[T4] 92 [12] p3[T3] Pa[Tl] + P21 [T2] P2 [T4] ¢3[T3] Pa[Tl] +
. ’ A b1 (T3] ¢2[12] ¢3[T4] da[Tl] —P1[T2] P2 (T3] Pp3[T4] Ppa[T1] -
D t{T bl ¢ . . . j ¢1[t4] ¢2[t3] d3[Ttl] da[T2] + P2 [T3] P2 [T4] @3 [T1] Pa[T2] +
Sqrt[nt] ECLTALES (Sl et RIS $1[T4] 62 (T1] 63 (3] ba [12] - 61 [T1] 62 [t4] b3 [t3] dba [T2] -
A . . ) $1[t3] ¢2[T1] ¢3[T4] ¢a[r2] +¢1[T1] ¢ [t3]¢3[t4]¢4[t2]+
(xNote distinction between the list "tau" and its elements tix) G1[T4] G2 [T2] b3 [T1] ba[T3] - b1 [T2] b2 [T4] b3 [TLl] dba[T3] -
Y[tauListO] ¢1[t4]¢2[t1]¢3[732]¢4[t3]+d>1[731]¢2[t4]¢3[32]¢4['ﬁ3]+
¢1[t2] ¢p2[tl] ¢p3([Tt4] da[T3] - Pa[Tl] ¢$2[T2] ¢3[T4] ¢4 [T3] -
LeagthExpances] 610731 ¢7 [12] ¢3[t1] a[T4] + 61 [T2] 92 [t3] é3[T1] a4 [T4] +
(+ This defines a list that permutes some of the arguments x) 61[T3] 2 [Ttl] ¢3[T2] da[T4] —Pp1[TLl] d2[T3] B3 [T2] PalTd] -
taulListl = Permute[tauList®, Cyclese{{1, 2}}] G1[12] 2 [T1] ¢3[T3] P4 [T4] + 1 [T1] P2 [T2] ¢3[T3] Pa[T4])
(» If this is zero, then the permutation(s) changes the sign \
: : 24 Number of terms
of the wavefunction. This happens for an odd number of Each term in
permutations «) (r2, t1, 3, w4} taulList1 whaseachr
¥[tauList0] + y[tauListl] // Simplify and each ¢
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o W(original)+y(permuted)

exactly once



Suggested Reading/Viewing

« Autschbach Ch. 7
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