
1

CE 530 Molecular Simulation

Lecture 25
Efficiencies and Parallel Methods

David A. Kofke
Department of Chemical Engineering

SUNY Buffalo
kofke@eng.buffalo.edu

2

Look-Up Tables

¡ Evaluation of interatomic potential can be time-consuming
• For example, consider the exp-6 potential

• Requires a square root and an exponential

¡ Simple idea:
• Precompute a table of values at the beginning of the simulation

and use it to evaluate the potential via interpolation

6() CrAu r Be
r

-= - +

3Interpolation
¡ Many interpolation schemes could be used
¡ e.g., Newton-Gregory forward difference method

• equally spaced values δs of s = r2

• given u1 = u(s1), u2 = u(s2), etc.
• define first difference and second difference

• to get u(s) for sk < s < sk+1, interpolate

• forces, virial can be obtained using finite differences

1k k ku u ud += - 2
1k k ku u ud d d+= -

() /ks s sx d= -21
2() (1)k k ku s u u uxd x x d» + + -

2ks - 1ks - ks 1ks + 2ks +

2ku - 1ku - ku 1ku + 2ku +

2kud - 1kud - kud 1kud +
2
kud2

1kud -
2

2kud -

s

4

Finding Neighbors Efficiently

¡ Evaluation of all pair interactions is an
O(N2) calculation

¡ Very expensive for large systems
¡ Not all interactions are relevant

• potential attenuated or even truncated
beyond some distance

¡ Worthwhile to have efficient methods to
locate neighbors of any molecule

¡ Two common approaches
• Verlet neighbor list
• Cell list

rc

5

Verlet List

¡ Maintain a list of neighbors
• Set neighbor cutoff radius as

potential cutoff plus a “skin”
¡ Update list whenever a

molecule travels a distance
greater than the skin
thickness

¡ Energy calculation is O(N)
¡ Neighbor list update is O(N2)

• but done less frequently

rc

rn

6

Cell List

¡ Partition volume into a set of
cells

¡ Each cell keeps a list of the
atoms inside it

¡ At beginning of simulation set
up neighbor list for each cell
• list never needs updating

rc

7

Cell List

¡ Partition volume into a set of
cells

¡ Each cell keeps a list of the
atoms inside it

¡ At beginning of simulation set
up neighbor list for each cell
• list never needs updating

rc

8

Cell List

¡ Partition volume into a set of
cells

¡ Each cell keeps a list of the
atoms inside it

¡ At beginning of simulation set
up neighbor list for each cell
• list never needs updating

rc

9

Cell List

¡ Partition volume into a set of
cells

¡ Each cell keeps a list of the
atoms inside it

¡ At beginning of simulation set
up neighbor list for each cell
• list never needs updating

¡ Fewer unneeded pair
interactions for smaller cells

rc

13

Parallelizing Simulation Codes

¡ Two parallelization strategies
• Domain decomposition

Each processor focuses on fixed region of simulation space (cell)
Communication needed only with adjacent-cell processors
Enables simulation of very large systems for short times

• Replicated data
Each processor takes some part in advancing all molecules
Communication among all processors required
Enables simulation of small systems for longer times

14

Limitations on Parallel Algorithms

¡ Straightforward application of raw parallel power
insufficient to probe most interesting phenomena

¡ Advances in theory and technique needed to enable
simulation of large systems over long times

Figure from P.T. Cummings

15

Parallelizing Monte Carlo
¡ Parallel moves in independent regions

• moves and range of interactions cannot span large distances
¡ Hybrid Monte Carlo

• apply MC as bad MD, and apply MD parallel methods
time information lost while introducing limitations of MD

¡ Farming of independent tasks or simulations
• equilibration phase is sequential
• often a not-too-bad approach

¡ Parallel trials with coupled acceptance
• “Esselink” method

16Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)

17Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i)

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor

(1)W (2)W (3)W (4)W (5)W

1
()

k

i
Z W i

=
=å

+ + + + Z=

18Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i)

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor

¡ 4. Select one trial with probability
1
()

k

i
Z W i

=
=å

() () /p n W n Z=

19Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i)

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor

¡ 4. Select one trial with probability

¡ Now account for reverse trial:
¡ 5. Pick a molecule from original

configuration
• Need to evaluate a probability it

would be generated from trial
configuration

• Plan: Choose a path that includes
the other (ignored) trials

1
()

k

i
Z W i

=
=å

() () /p n W n Z=

20Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i)

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor

¡ 4. Select one trial with probability

¡ Now account for reverse trial:
¡ 5. Pick a molecule from original

configuration
• Need to evaluate a probability it

would be generated from trial
configuration

• Plan: Choose a path that includes
the other (ignored) trials

¡ 6. Compute the reverse-trial W(o)

1
()

k

i
Z W i

=
=å

() () /p n W n Z=
()W o

21Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i)

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor

¡ 4. Select one trial with probability

¡ Now account for reverse trial:
¡ 5. Pick a molecule from original

configuration
• Need to evaluate a probability it

would be generated from trial
configuration

• Plan: Choose a path that includes
the other (ignored) trials

¡ 6. Compute the reverse-trial W(o)
¡ 7. Compute reverse-trial normalizer

1
()

k

i
Z W i

=
=å

() () /p n W n Z=

(2)W (3)W (4)W (5)W+ + + Z ¢=

()W o +

() () ()Z Z W n W o R W o¢ = - + º +

22Esselink Method
¡ 1. Generate k trials from the present

configuration
• each trial handled by a different

processor
• useful if trials difficult to generate

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i)

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor

¡ 4. Select one trial with probability

¡ Now account for reverse trial:
¡ 5. Pick a molecule from original

configuration
• Need to evaluate a probability it

would be generated from trial
configuration

• Choose a path that includes the
other (ignored) trials

¡ 6. Compute the reverse-trial W(o)
¡ 7. Compute reverse-trial normalizer

¡ 8. Accept new trial with probability
1
()

k

i
Z W i

=
=å

() () /p n W n Z=

() () ()Z Z W n W o R W o¢ = - + º +

min 1,acc
Zp
Z

é ù= ê ú¢ë û

?

23Some Results

()min 1,
()acc

W n
W

p
o

é ù
= ê ú

ë û

¡ Use of an incorrect acceptance
probability

¡ A sequential implemention
¡ Average cpu time to acceptance of a trial

• independent of number of trials g up to
about g = 10

• indicates parallel implementation with
g = 10 would have 10× speedup

• larger g is wasteful because
acceptable configurations are rejected

only one can be accepted per move

()min 1,
()acc

W n Rp
W o R

é ù+
= ê ú+ë û

Esselink et al.,
PRE, 51(2)
1995

24

Simulation of Infrequent Events
¡ Some processes occur quickly but infrequently; e.g.

• rotational isomerization
• diffusion in a solid
• chemical reaction

¡ Time between events may be microseconds or longer, but
event transpires over picoseconds

time

observable

sµ

ps

25Transition-State Theory
¡ Analysis of activation barrier for process

¡ Transition is modeled as product of two probabilities
• probability that reaction coordinate has maximum value

given by free-energy calculation (integration to top of barrier)

• probability that it proceeds to “product” given that it is at the maximum
given by linear-response theory calculation performed at top of barrier

¡ Requires a priori specification of rxn coordinate and barrier value

Reaction coordinate

Free
energy

26

Parallel Replica Method
(Voter’s Method)

¡ Establish several configurations with same coordinates, but different
initial momenta

¡ Specify criterion for departure from current “basin” in phase space
• e.g., location of energy minimum

evaluate with steepest-descent or conjugate-gradient methods

¡ Perform simulation dynamics in parallel for different initial systems
¡ Continue simulations until one of the replicas is observed to depart

its local basin
¡ Advance simulation clock by sum of simulation times of all replicas
¡ Repeat beginning all replicas with coordinates of escaping replica

27

Theory Behind Voter’s Method
¡ Assumes independent, uncorrelated crossing events
¡ Probability distribution for a crossing event (sequential

calculation)

¡ Probability distribution for crossing event in any of M
simulations

¡ No-crossing cumulative probability
¡ Thus

() ktp t ke-= k = crossing rate constant

j1 1

1

probability of crossing probability simulation m
()

in simulation j at time t has yet had crossing event

() ()

MM

M
j m

MM

j m
j m j

p t

p t p t

= =

= ¹

æ ö æ ö
= ´ç ÷ ç ÷

è øè ø

= ´

å Õ

å Õ
() () kt

t

p t p d et t
¥

-= =ò

1
() j m

sum

MM kt kt
M

j m j
kt

p t ke e

Mke

- -

= ¹

-

= ´

=

å Õ
Rate constant for independent crossings is same
as for individual crossings, if tsum is used

28

Appealing Features of Voter’s Method

¡ No a priori specification of transition path / reaction
coordinate required
• Works well with multiple (unidentified) transition states
• Does not require specification of “product” states

¡ Parallelizes time calculation
• “Discarded” simulations are not wasted

¡ Works well in a heterogeneous environment of computing
platforms
• OK to have processors with different computing power
• Parallelization is loosely coupled

29

Summary

¡ Some simple efficiencies to apply to simulations
• Table look-up of potentials
• Cell lists for identifying neighbors

¡ Parallelization methods
• Time parallelization is difficult
• Esselink method for parallelization of MC trials
• Voter’s method for parallelization of MD simulation of rare

events

