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Look-Up Tables

¡ Evaluation of interatomic potential can be time-consuming
• For example, consider the exp-6 potential

• Requires a square root and an exponential

¡ Simple idea:
• Precompute a table of values at the beginning of the simulation 

and use it to evaluate the potential via interpolation
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3Interpolation
¡ Many interpolation schemes could be used
¡ e.g., Newton-Gregory forward difference method

• equally spaced values δs of s = r2

• given u1 = u(s1), u2 = u(s2), etc. 
• define first difference and second difference

• to get u(s) for sk < s < sk+1, interpolate

• forces, virial can be obtained using finite differences
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Finding Neighbors Efficiently

¡ Evaluation of all pair interactions is an 
O(N2) calculation

¡ Very expensive for large systems
¡ Not all interactions are relevant

• potential attenuated or even truncated 
beyond some distance

¡ Worthwhile to have efficient methods to 
locate neighbors of any molecule

¡ Two common approaches
• Verlet neighbor list
• Cell list
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Verlet List

¡ Maintain a list of neighbors
• Set neighbor cutoff radius as 

potential cutoff plus a “skin”
¡ Update list whenever a 

molecule travels a distance 
greater than the skin 
thickness

¡ Energy calculation is O(N)
¡ Neighbor list update is O(N2)

• but done less frequently
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Cell List

¡ Partition volume into a set of 
cells

¡ Each cell keeps a list of the 
atoms inside it

¡ At beginning of simulation set 
up neighbor list for each cell
• list never needs updating
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Cell List

¡ Partition volume into a set of 
cells

¡ Each cell keeps a list of the 
atoms inside it

¡ At beginning of simulation set 
up neighbor list for each cell
• list never needs updating

¡ Fewer unneeded pair 
interactions for smaller cells
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Parallelizing Simulation Codes

¡ Two parallelization strategies
• Domain decomposition

Each processor focuses on fixed region of simulation space (cell)
Communication needed only with adjacent-cell processors
Enables simulation of very large systems for short times

• Replicated data
Each processor takes some part in advancing all molecules
Communication among all processors required
Enables simulation of small systems for longer times
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Limitations on Parallel Algorithms

¡ Straightforward application of raw parallel power 
insufficient to probe most interesting phenomena

¡ Advances in theory and technique needed to enable 
simulation of large systems over long times

Figure from P.T. Cummings
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Parallelizing Monte Carlo
¡ Parallel moves in independent regions

• moves and range of interactions cannot span large distances
¡ Hybrid Monte Carlo

• apply MC as bad MD, and apply MD parallel methods
time information lost while introducing limitations of MD

¡ Farming of independent tasks or simulations
• equilibration phase is sequential
• often a not-too-bad approach

¡ Parallel trials with coupled acceptance
• “Esselink” method



16Esselink Method
¡ 1. Generate k trials from the present 

configuration
• each trial handled by a different 

processor
• useful if trials difficult to generate 

(e.g., chain configurational bias)



17Esselink Method
¡ 1. Generate k trials from the present 

configuration
• each trial handled by a different 

processor
• useful if trials difficult to generate 

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i) 

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT] 

¡ 3. Define a normalization factor
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¡ 1. Generate k trials from the present 

configuration
• each trial handled by a different 

processor
• useful if trials difficult to generate 

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i) 

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor 

¡ 4. Select one trial with probability

¡ Now account for reverse trial:
¡ 5. Pick a molecule from original 

configuration
• Need to evaluate a probability it 

would be generated from trial 
configuration

• Plan: Choose a path that includes 
the other (ignored) trials

¡ 6. Compute the reverse-trial W(o)
¡ 7. Compute reverse-trial normalizer
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¡ 1. Generate k trials from the present 

configuration
• each trial handled by a different 

processor
• useful if trials difficult to generate 

(e.g., chain configurational bias)
¡ 2. Compute an appropriate weight W(i) 

for each new trial
• e.g., Rosenbluth weight if CCB
• more simply, W(i) = exp[-U(i)/kT]

¡ 3. Define a normalization factor 

¡ 4. Select one trial with probability

¡ Now account for reverse trial:
¡ 5. Pick a molecule from original 

configuration
• Need to evaluate a probability it 

would be generated from trial 
configuration

• Choose a path that includes the 
other (ignored) trials

¡ 6. Compute the reverse-trial W(o)
¡ 7. Compute reverse-trial normalizer

¡ 8. Accept new trial with probability
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23Some Results
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¡ Use of an incorrect acceptance 
probability

¡ A sequential implemention
¡ Average cpu time to acceptance of a trial

• independent of number of trials g up to 
about g = 10

• indicates parallel implementation with 
g = 10 would have 10× speedup

• larger g is wasteful because 
acceptable configurations are rejected

only one can be accepted per move
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Esselink et al., 
PRE, 51(2) 
1995
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Simulation of Infrequent Events
¡ Some processes occur quickly but infrequently; e.g.

• rotational isomerization
• diffusion in a solid
• chemical reaction

¡ Time between events may be microseconds or longer, but 
event transpires over picoseconds

time

observable

sµ

ps



25Transition-State Theory
¡ Analysis of activation barrier for process

¡ Transition is modeled as product of two probabilities
• probability that reaction coordinate has maximum value

given by free-energy calculation (integration to top of barrier)

• probability that it proceeds to “product” given that it is at the maximum
given by linear-response theory calculation performed at top of barrier

¡ Requires a priori specification of rxn coordinate and barrier value

Reaction coordinate

Free 
energy
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Parallel Replica Method 
(Voter’s Method)

¡ Establish several configurations with same coordinates, but different 
initial momenta

¡ Specify criterion for departure from current “basin” in phase space
• e.g., location of energy minimum

evaluate with steepest-descent or conjugate-gradient methods

¡ Perform simulation dynamics in parallel for different initial systems
¡ Continue simulations until one of the replicas is observed to depart 

its local basin
¡ Advance simulation clock by sum of simulation times of all replicas
¡ Repeat beginning all replicas with coordinates of escaping replica 
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Theory Behind Voter’s Method
¡ Assumes independent, uncorrelated crossing events
¡ Probability distribution for a crossing event (sequential 

calculation)

¡ Probability distribution for crossing event in any of M 
simulations

¡ No-crossing cumulative probability
¡ Thus
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Rate constant for independent crossings is same 
as for individual crossings, if tsum is used
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Appealing Features of Voter’s Method

¡ No a priori specification of transition path / reaction 
coordinate required
• Works well with multiple (unidentified) transition states
• Does not require specification of “product” states

¡ Parallelizes time calculation
• “Discarded” simulations are not wasted

¡ Works well in a heterogeneous environment of computing 
platforms
• OK to have processors with different computing power
• Parallelization is loosely coupled
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Summary

¡ Some simple efficiencies to apply to simulations
• Table look-up of potentials
• Cell lists for identifying neighbors

¡ Parallelization methods
• Time parallelization is difficult
• Esselink method for parallelization of MC trials
• Voter’s method for parallelization of MD simulation of rare 

events


