CE 530 Molecular St mulation

Lecture 25
Efficiencies and Parallel Methods

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo

kofke(@eng.buffalo.edu

Look-Up Tables

O Evaluation of interatomic potential can be time-consuming

* For example, consider the exp-6 potential

u(r) = _£6 +Be ¢
r

* Requires a square root and an exponential

O Simple idea:

* Precompute a table of values at the beginning of the simulation
and use it to evaluate the potential via interpolation

Interpolation

O Many interpolation schemes could be used

O e.g., Newton-Gregory forward difference method
* equally spaced values &s of s = r?
© given u; = u(s;), u, = u(s,), etc.
* define first difference and second difference
OUy = Uy yy — Uy 5%y, = Sy — Suy

* to get u(s) for s, < s < s;.,, interpolate

u(s) = uy + Eouy +LEE-1)5%u, E=(s—5;)/0s
S
”kl—2 ukl—l ”Ik ”k|+1 ”kl+2
~ — > — > o —
Olly_p Ouy_y ouy, Suy
~ 5 o 5 o 5 o
o Ujp_» o Ur_q Uy

* forces, virial can be obtained using finite differences

Finding Neighbors Efficiently

O Evaluation of all pair interactions is an

O(N?) calculation

O Very expensive for large systems
O Not all interactions are relevant

* potential attenuated or even truncated
beyond some distance

O Worthwhile to have efficient methods to
locate neighbors of any molecule

O Two common approaches

* Verlet neighbor list
« Cell list

Verlet List

O Maintain a list of neighbors

* Set neighbor cutoff radius as
potential cutoff plus a “skin”

O Update list whenever a
molecule travels a distance
greater than the skin
thickness

O Energy calculation is O(N)

O Neighbor list update is O(N?)
* but done less frequently

Cell List

O Partition volume into a set of
cells

:

O Each cell keeps a list of the
atoms 1nside it

X

!\

O At beginning of simulation set

up neighbor list for each cell .\ I
* list never needs updating O \\ o O
0o @
o @7 ®g

Cell List

O Partition volume into a set of

cells N X 7.; \b\
O Each cell keeps a list of the / O ‘ \.
atoms inside it @ / e © ‘\
O At beginning of simulation set @ ‘\ @
up neighbor list for each cell O \{c
* list never needs updating O >
@
o 02 0¢g

Cell List

O Partition volume into a set of

cells 4‘7.1;\ b
O Each cell keeps a list of the .\‘
atoms inside it e ©
O At beginning of simulation set @ ‘%
up neighbor list for each cell \Q I
* list never needs updating O \\./‘
@
o 0% 0gq

Cell List

O Partition volume into a set of

cells O ij\.
O Each cell keeps a list of the _

atoms inside 111 @ O
O At beginning of simulation set #. @

up neighbor list for each cell \. I

* list never needs updating .\

O Fewer unneeded pair

interactions for smaller cells @

Parallelizing Simulation Codes

O Two parallelization strategies

* Domain decomposition
Each processor focuses on fixed region of simulation space (cell)
Communication needed only with adjacent-cell processors
Enables simulation of very large systems for short times

* Replicated data
Each processor takes some part in advancing all molecules
Communication among all processors required

Enables simulation of small systems for longer times

13

Limitations on Parallel Algorithms

O Straightforward application of raw parallel power
isufficient to probe most interesting phenomena

LI LA T

Real Time Duration of Simulation
|

T T

Replicated Data

Challenging problerns
in physics, cheraistry and biolo

Global sum limit

L B

LI

Increasing Massively
Parallel Compute Power

LI

Domain Decomposttion

| I ——

Number of Atomic Units

O Advances in theory and technique needed to enable
simulation of large systems over long times

14

Figure from P.T. Cummings

Parallelizing Monte Carlo

O Parallel moves in independent regions
* moves and range of interactions cannot span large distances

O Hybrid Monte Carlo
* apply MC as bad MD, and apply MD parallel methods

time information lost while introducing limitations of MD
O Farming of independent tasks or simulations
* equilibration phase is sequential
* often a not-too-bad approach
O Parallel trials with coupled acceptance
« “Esselink” method

15

Esselink Method

|O 1. Generate k trials from the present
configuration
each trial handled by a different

processor

useful if trials difficult to generate
(e.g., chain configurational bias)

o':

16

Esselink Method

|O 1. Generate k trials from the present
configuration

each trial handled by a different

processor

useful if trials difficult to generate
(e.g., chain configurational bias)

O 2. Compute an appropriate weight W(1)
for each new trial

e.g., Rosenbluth weight if CCB
more simply, W(i) = exp[-U(i)/kT]

|O 3. Define a normalization factor

k
Z=>) W)
i=1

— T

tV.V_(l); +EV<2) +EV_V<3) +EV_V(4)' +€.Wf(5)'

17

Esselink Method

|O 1. Generate k trials from the present
configuration

each trial handled by a different

processor

useful if trials difficult to generate
(e.g., chain configurational bias)

O 2. Compute an appropriate weight W(1)
for each new trial

e.g., Rosenbluth weight if CCB
more simply, W(i) = exp[-U(i)/kT]
|O 3. Define a normalization factor

k
Z =YW
i=1
O 4. Select one trial with probability) o :.
p(n)=W(n)/Z —late
. - ~

g

18

Esselink Method ”

|O 1. Generate k trials from the present O Now account for reverse trial:
configuration O 5. Pick a molecule from original
each trial handled by a different configuration
processor * Need to evaluate a probability it
useful if trials difficult to generate would be generated from trial
(e.g., chain configurational bias) configuration
|O 2. Compute an appropriate weight W(i) * Plan: Choose a path that includes
for each new trial the other (ignored) trials

e.g., Rosenbluth weight if CCB
more simply, W(i) = exp[-U(i)/kT]

|O 3. Define a normalization factor

k
Z =YW
i=1
O 4. Select one trial with probability) o :.
p(n) =W (n)/Z -

- « —_

g

configuration

processor

for each new trial

k
Z=>) W)
i=1

p(n)=W(n)/Z

Esselink Method

e.g., Rosenbluth weight if CCB
more simply, W(i) = exp[-U(i)/kT]

|O 3. Define a normalization factor

<«

|O 1. Generate k trials from the present

each trial handled by a different

useful if trials difficult to generate
(e.g., chain configurational bias)

O 4. Select one trial with probability

O 2. Compute an appropriate weight W(1)

O Now account for reverse trial:

O 5. Pick a molecule from original
configuration

* Need to evaluate a probability it
would be generated from trial
configuration

20

* Plan: Choose a path that includes

the other (ignored) trials
O 6. Compute the reverse-trial W(o)

g

configuration

processor

for each new trial

k
Z=>) W)
i=1

p(n)=W(n)/Z

Esselink Method ”

|O 1. Generate k trials from the present

each trial handled by a different
useful if trials difficult to generate

(e.g., chain configurational bias)

e.g., Rosenbluth weight if CCB
more simply, W(i) = exp[-U(i)/kT]

|O 3. Define a normalization factor

O 4. Select one trial with probability

<«

O 2. Compute an appropriate weight W(1)

O Now account for reverse trial:

O 5. Pick a molecule from original
configuration

* Need to evaluate a probability it
would be generated from trial
configuration

* Plan: Choose a path that includes
the other (ignored) trials

O 6. Compute the reverse-trial W(o)
O 7. Compute reverse-trial normalizer
Z'=Z-W(mn)+W()=R+W(0)

W ()| +

—~

g

3) +EV_V(4)'

=7

+Enf(5).

Esselink Method ”

|O 1. Generate k trials from the present O Now account for reverse trial:
configuration O 5. Pick a molecule from original
each trial handled by a different configuration
processor * Need to evaluate a probability it
useful if trials difficult to generate would be generated from trial
(e.g., chain configurational bias) configuration
|O 2. Compute an appropriate weight W(i) * Choose a path that includes the
for each new trial other (ignored) trials
e.g., Rosenbluth weight if CCB O 6. Compute the reverse-trial W(o)
more simply, W(i) = exp[-U(i)/kT] O 7. Compute reverse-trial normalizer
|O 3. Define a normalization factor Z'=Z-W(n)+W()=R+W (o)
5 Zk:W(i) O 8. Accept new trialZwith probability
i=l 5 DPace = min{l,—’}
IO 4. Select one trial with probability oo Z
p(n)=W(n)/Z L ° o

g
(@) oOO oOO oOO OOQ
@) 0) 0) @) 0) @) 0)
© QO oO oO oO
(@) © O 0] © O © O

Some Results

O Use of an incorrect acceptance

probability

W(n)}

=min| 1,
pacc |: W(O)

| W(n)+ R}

=min| 1,
Pace { W(0)+ R

- “_%'? 5 + 39 e

-6000 |

i

- -8100

]

-y

'_62"00 20 a s aasal 2 +
-1

a2 2 2222l PR ST
10 100 1000
.. .8 . o
FIG. 1. Comparison of the total energy of pentane in sili-
calite as calculated from the sampling without the correction
for the bias (O) with the correct sampling scheme (o). g is the
number of chains grown in parallel and f = 1. The horizon-

tal line is the average energy as calculated from the correct
results. e

23

O A sequential implemention
O Average cpu time to acceptance of a trial

* independent of number of trials g up to
about g = 10

* indicates parallel implementation with
g = 10 would have 10 X speedup

* larger g is wasteful because
acceptable configurations are rejected

only one can be accepted per move

1T 10 100
Esselink et al., g

PRE, 51(2) FIG. 2. Average time to acceptance 7.(g) for methane (o)
1995 and pentane (O) in silicalite for varying number of molecules
g placed in parallel. The data are taken from Tables I and II.

24

Simulation of Infrequent Events

O Some processes occur quickly but infrequently; e.g.
* rotational isomerization
* diffusion in a solid
* chemical reaction

O Time between events may be microseconds or longer, but

event transpires over picoseconds
pPS

observable —>

S — T\

L\i/\j\/\f\}

time

Transition-State Theory

O Analysis of activation barrier for process

Free
energy

Reaction coordinate

O Transition 1s modeled as product of two probabilities

* probability that reaction coordinate has maximum value
given by free-energy calculation (integration to top of barrier)

 probability that it proceeds to “product” given that it is at the maximum

given by linear-response theory calculation performed at top of barrier

O Requires a priori specification of rxn coordinate and barrier value

25

Parallel Replica Method
(Voter’s Method)

26

O Establish several configurations with same coordinates, but different

nitial momenta

O Specify criterion for departure from current “basin” in phase space

* e.g., location of energy minimum

evaluate with steepest-descent or conjugate-gradient methods

O Perform simulation dynamics in parallel for different initial systems

O Continue simulations until one of the replicas is observed to depart
its local basin

O Advance simulation clock by sum of simulation times of all replicas

O Repeat beginning all replicas with coordinates of escaping replica

27

Theory Behind Voter’s Method

O Assumes independent, uncorrelated crossing events

O Probability distribution for a crossing event (sequential

calculation) "y .
p(t) =ke k = crossing rate constant

O Probability distribution for crossing event in any of M

simulations
probability of crossing j ﬁ (probability simulation m]
X

t
Pu(t)= Z [m simulation j at time t j

—Zp(t)% Hp(t

m¢]

O No- crossmg cumulatlve probability — p(@)=[pr)dr=e™
O Thus !

;_has yet had crossing event

P ()= Zke foe m

m;t]

iy Rate constant for independent crossings is same
= Mke "'sum

as for individual crossings, if tg,,, 1s used

28

Appealing Features of Voter’s Method

O No a priori specification of transition path / reaction
coordinate required

* Works well with multiple (unidentified) transition states

* Does not require specification of “product” states

O Parallelizes time calculation

* “Discarded’” simulations are not wasted

O Works well in a heterogeneous environment of computing
platforms
* OK to have processors with different computing power

* Parallelization is loosely coupled

Summary

O Some simple efficiencies to apply to simulations
* Table look-up of potentials
* Cell lists for identifying neighbors

O Parallelization methods

* Time parallelization is difficult
 Esselink method for parallelization of MC trials

* Voter’s method for parallelization of MD simulation of rare
events

29

