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Summary
from Lecture 12

¡ Dynamical properties describe the way collective behaviors 
cause macroscopic observables to redistribute or decay

¡ Evaluation of transport coefficients requires non-equilibrium 
condition
• NEMD imposes macroscopic non-equilibrium steady state
• EMD approach uses natural fluctuations from equilibrium

¡ Two formulations to connect macroscopic to microscopic
• Einstein relation describes long-time asymptotic behavior
• Green-Kubo relation connects to time correlation function

¡ Several approaches to evaluation of correlation functions
• direct:  simple but inefficient
• Fourier transform: less simple, more efficient
• coarse graining: least simple, most efficient, approximate
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Limitations of Equilibrium Methods

¡ Response to naturally occurring (small) fluctuations
¡ Signal-to-noise particularly bad at long times

• but may have significant contributions to transport coefficient 
here

¡ Finite system size limits time that correlations can be 
calculated reliably

correlations between 
these two… 

…lose meaning once 
they’ve traveled the 
length of the system
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Non-Equilibrium Molecular Dynamics

¡ Introduce much larger fluctuation artificially
• dramatically improve signal-to-noise of response

¡ Measure steady-state response
¡ Corresponds more closely to experimental procedure

• create flow of momentum, energy, mass, etc. to measure… 
• …shear viscosity, thermal conductivity, diffusivity, etc.

¡ Advantages
• better quality of measurement
• can also examine nonlinear response

¡ Disadvantages
• limited to one transport process at a time
• may need to extrapolate to linear response
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One (Disfavored) Approach

¡ Introduce boundaries in which molecules interact with 
inhomogeneous momentum/mass/energy reservoirs

¡ Disadvantages
• incompatible with PBC
• introduces surface effects
• inhomogeneous
• difficult to analyze to obtain transport coefficients correctly

¡ Have a look with a thermal conductivity applet
¡ Better methods rely on linear response theory

http://wings.buffalo.edu/eng/ce/kofke/applets/highschool/heattransfer.html
http://wings.buffalo.edu/eng/ce/kofke/applets/highschool/heattransfer.html
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Linear Response Theory: Static

¡ Linear Response Theory forms the theoretical basis for 
evaluation of transport properties by molecular simulation

¡ Consider first a static linear response
¡ Examine how average of a mechanical property A changes in 

the presence of an external perturbation f
• Unperturbed value
• Apply perturbation to Hamiltonian
• New value of A

• Linearize
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Example of Static Linear Response

¡ Dielectric response to an external electric field
• coupling to dipole moment of system, My

• interest in net polarization induced by field
• thus A = B = My

• susceptibility
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Linear Response Theory: Dynamic 1.

¡ Time-dependent perturbation Fe(t)
¡ Consider situation in which Fe is non-zero for t < 0, then is 

switched off at t = 0
¡ Response ΔA decays to zero
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Linear Response Theory: Dynamic 2.

¡ Now consider a more general time-dependent perturbation Fe(t)
¡ Simplest general form of linear response

¡ For the protocol previously discussed (shut off field at t = 0)

• thus

( ) ( ) ( )
t

AB eA t dt t t F tc
-¥

¢ ¢ ¢D = -ò
Value at time t is a sum of the 
responses to the perturbation over the 
entire history of the system

0
( ) ( )

( )

AB

AB
t

A t dt t t

d

l c

l tc t

-¥
¥

¢ ¢D = -

=

ò

ò

( ) (0) ( )AB
t

d B A ttc t b
¥

=ò    χ AB(t) = −β B(0) !A(t)



10

Perturbation-Response Protocols
¡ Turn on perturbation at t = 0, and keep 

constant thereafter
• measured response is proportional to integral 

of time-integrated correlation function

¡ Apply as δ-function pulse at t = 0, 
subsequent evolution proceeding normally
• measured response proportional to time 

correlation function itself

¡ Use a sinusoidally oscillating perturbation
• measured response proportional to Fourier-

Laplace transformed correlation functions at 
the applied frequency

• extrapolate results from several frequencies 
to zero-frequency limit
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Synthetic NEMD
¡ Perturb usual equations of motion in some way

• Artificial “synthetic” perturbation need not exist in nature
¡ For transport coefficient of interest Lij, Ji = LijXj

• Identify the Green-Kubo relation for the transport coefficient

• Invent a fictitious field Fe, and its coupling to the system such that 
the dissipative flux is Jj

• ensure that 
equations of motion correspond to an incompressible phase space
equations of motion are consistent with periodic boundaries
equations of motion do not introduce inhomogeneities

• apply a thermostat
• couple Fe to the system and compute the steady-state average
• then
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Phase Space
¡ Underlying development assumes that equations of motion 

correspond to an incompressible phase space

¡ This can be ensured by having the perturbation derivable 
from a Hamiltonian

¡ Most often the equations of motion are not derivable from a 
Hamiltonian
• but are still formulated to be compatible with an incompressible 

phase space
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Diffusion: An Inhomogeneous Approach

¡ Artificially distinguish particles by “color”
¡ Introduce a species-changing plane

Molecules moving this way 
across wall get colored red Those crossing this way get blue
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Diffusion: An Inhomogeneous Approach

¡ Artificially distinguish particles by “color”
¡ Introduce a species-changing plane

¡ Problems
• Difficult to know form of inhomogeneity in color profile
• Cannot be extended to multicomponent diffusion

Considering periodic boundaries, 
this creates a color gradient
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Self-Diffusion: Perturbation
¡ Green-Kubo relation

¡ Label each molecule with one of two “colors”
• each color given to half the molecules

¡ Apply Hamiltonian perturbation

¡ New equations of motion

¡ System remains homogeneous
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Self-Diffusion:  Response
¡ Appropriate response variable is the “color current”

¡ According to linear response theory

¡ In the canonical ensemble

¡ Back to Green-Kubo relation
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17Thermostatting
¡ External field does work on the system

• this must be dissipated to reach steady state
¡ Thermostat based on velocity relative to total current density

• “peculiar velocity”

• constrain kinetic energy

• modified equations of motion

• thermostatting multiplier
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18Shear Viscosity:  
Boundary-Driven Algorithm

¡ Homogeneous algorithm for boundary-driven shear is possible
• unique to shear viscosity

¡ Lees-Edwards shearing periodic boundaries (sliding brick)
• Image cells in plane above and below central cell move 

• Image velocity given by shear rate

• Peculiar velocity of all images equal 
ˆix ix yp p Lg= -

xdv
dy

g =

yL L= +

yL L= -
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21Shear Viscosity:  
Boundary-Driven Algorithm

¡ Homogeneous algorithm for boundary-driven shear is possible
• unique to shear viscosity

¡ Lees-Edwards shearing periodic boundaries (sliding brick)
• Image cells in plane above and below central cell move 

• Image velocity given by shear rate

• Peculiar velocity of all images equal 

¡ Try the applet
ˆix ix yp p Lg= -

xdv
dy

g =

http://www.eng.buffalo.edu/~kofke/applets/BoundaryShear.html
http://www.eng.buffalo.edu/~kofke/applets/BoundaryShear.html
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Lees-Edwards Boundary Conditions

Lg

Lg-

Molecule exiting 
here, in middle of 
central cell

xdv
dy
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Lees-Edwards Boundary Conditions

Lg

Lg-

Is replaced by one 
here, shifted over 
toward the edge of 
the cell
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Lees-Edwards Boundary Conditions

Lg

Lg-

And with a velocity 
that is modified 
according to the 
shear rate
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dy
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Lees-Edwards Boundary: API

User's Perspective on the Molecular Simulation API

Space

Integrator

Controller

MeterAbstract Boundary Configuration

Phase Species Potential Display Device

Simulation
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Lees-Edwards Boundary: Java Code
public class Space2D.BoundarySlidingBrick extends 

Space2D.BoundaryPeriodicSquare
public void nearestImage(Vector dr) {

double delrx = delvx*timer.currentValue();
double cory;
cory = (dr.y > 0.0) ? Math.floor(dr.y/dimensions.y+0.5):Math.ceil(dr.y/dimensions.y-0.5);
dr.x -= cory*delrx;
dr.x -= dimensions.x * ((dr.x > 0.0) ? Math.floor(dr.x/dimensions.x+0.5) :                    

Math.ceil(dr.x/dimensions.x-0.5));
dr.y -= dimensions.y * cory;

}

public void centralImage(Coordinate c) {
Vector r = c.r;
double cory = (r.y > 0.0) ? Math.floor(r.y/dimensions.y) : Math.ceil(r.y/dimensions.y-1.0);
double corx = (r.x > 0.0) ? Math.floor(r.x/dimensions.x) : Math.ceil(r.x/dimensions.x-1.0);
if(corx==0.0 && cory==0.0) return;
double delrx = delvx*timer.currentValue();
Vector p = c.p;
r.x -= cory*delrx;
r.x -= dimensions.x * corx; 
r.y -= dimensions.y * cory;
p.x -= cory*delvx;

}
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Limitations of Boundary-Driven Shear

¡ No external field in equations of motion
• cannot employ response theory to link to viscosity

¡ Lag time in response of system to initiation of shear
• cannot be used to examine time-dependent flows

¡ A fictitious-force method is preferable
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DOLLS-Tensor Hamiltonian: Perturbation
¡ An arbitrary fictitious shear field can be imposed via the 

DOLLS-tensor Hamiltonian

¡ Equations of motion

• must be implemented with compatible PBC
¡ Example: Simple Couette shear
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DOLLS-Tensor Hamiltonian: Response

¡ Appropriate response variable is the pressure tensor

¡ According to linear response theory

¡ Shear viscosity, via Green-Kubo
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SLLOD Formulation
¡ DOLLS-tensor formulation fails in more complex situations

• non-linear regime
• evaluation of normal-stress differences
• a simple change fixes things up

¡ SLLOD Equations of motion

¡ Example: Simple Couette shear

¡ Methods equivalent for irrotational flows
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Application

¡ NEMD usually introduces exceptionally large strain rates
• 108 sec-1 or greater
• dimensionless strain rate
• thus, e.g.,

m = 30g/mol; σ = 3A; ε/k = 100K; g* = 1.0  à g = 5×1011 sec-1

¡ Shear-thinning observed even in simple fluids at these rates
¡ Very important to extrapolate to zero shear
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