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Summary
from Lecture 12

O Dynamical properties describe the way collective behaviors
cause macroscopic observables to redistribute or decay

O Evaluation of transport coefficients requires non-equilibrium
condition
* NEMD imposes macroscopic non-equilibrium steady state
* EMD approach uses natural fluctuations from equilibrium
O Two formulations to connect macroscopic to microscopic
* FEinstein relation describes long-time asymptotic behavior
*  Green-Kubo relation connects to time correlation function
O Several approaches to evaluation of correlation functions
* direct: simple but inefficient
* Fourier transform: less simple, more efficient

* coarse graining: least simple, most efficient, approximate




Limitations of Equilibrium Methods

O Response to naturally occurring (small) fluctuations

O Signal-to-noise particularly bad at long times

* but may have significant contributions to transport coefficient
here

O Finite system size limits time that correlations can be
calculated reliably
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correlations between ...lose meaning once
these two... they’ ve traveled the
length of the system




Non-Equilibrium Molecular Dynamics

O Introduce much larger fluctuation artificially

* dramatically improve signal-to-noise of response
O Measure steady-state response

O Corresponds more closely to experimental procedure
* create flow of momentum, energy, mass, etc. to measure...
* ...Shear viscosity, thermal conductivity, diffusivity, etc.

O Advantages
* better quality of measurement
* can also examine nonlinear response

O Disadvantages

* limited to one transport process at a time

* may need to extrapolate to linear response




One (Disfavored) Approach

O Introduce boundaries in which molecules interact with
iInhomogeneous momentum/mass/energy reservoirs

O Disadvantages
* incompatible with PBC
* introduces surface effects

* inhomogeneous

* difficult to analyze to obtain transport coefficients correctly

O Have a look with a thermal conductivity applet

O Better methods rely on linear response theory



http://wings.buffalo.edu/eng/ce/kofke/applets/highschool/heattransfer.html
http://wings.buffalo.edu/eng/ce/kofke/applets/highschool/heattransfer.html

Linear Response Theory: Static

O Linear Response Theory forms the theoretical basis for
evaluation of transport properties by molecular simulation

O Consider first a static linear response
O Examine how average of a mechanical property 4 changes in
the presence of an external perturbation f

* Unperturbed value (4),
- Apply perturbation to Hamiltonian H=H,-AB(p",q")

* New value of A I dr e PHo=25)
A+ o

- Susceptibility
0(AA) describes first-order
L:o B 'B[<AB>O - <A>0 <B>O] static response to

* Linearize
( oA
perturbation




Example of Static Linear Response

O Dielectric response to an external electric field
* coupling to dipole moment of system, M,,  AH=-E M, q")
* interest in net polarization induced by field <M y>
© thusA =B =M,

No field Field on

i
S
0

<My>:0 <My>¢0

* susceptibility 'B[<MJ2’ >0 _<My >ﬂ




Linear Response Theory: Dynamic 1.

O Time-dependent perturbation F (t)

O Consider situation in which F, is non-zero for t <0, then is
switched off att=0

O Response AA decays to zero

[dra@eHo=#8)
<AA(f )> = Lo B(H,—2B) Ensemble average over (perturbation-
I € weighted) initial conditions

= PA(B(0)A(1))




Linear Response Theory: Dynamic 2.

O Now consider a more general time-dependent perturbation F (t)

O Simplest general form of linear response

L , , Value at time t 1s a sum of the
<AA(t)> - I dt 3 4p(t —1)F, (1) responses to the perturbation over the
—r entire history of the system

O For the protocol previously discussed (shut off field at t = 0)
0

(A(@0)) =2 [ d 3 g5t =1)

—Q0

=2 [dry 45(2)

t

* thus

[dry5(0)= B(BOA@)) b | X45(0)=-B(BO)A(®))




Perturbation-Response Protocols {a)= | a(s0ie) ey

—00

O Turn on perturbation at t = 0, and keep
constant thereafter

* measured response is proportional to integral

of time-integrated correlation function =

(Md(t)=-B | dr'(BO)A))
0

O Apply as &-function pulse at t =0,
subsequent evolution proceeding normally A

* measured response proportional to time
correlation function itself

0

(AA(t))=—B(B(0)A(1))

O Use a sinusoidally oscillating perturbation

* measured response proportional to Fourier- NN
Laplace transformed correlation functions at \/
the applied frequency 0

t—>o0

(M(D)=-B [ dre™ (BO)A1")
0

* extrapolate results from several frequencies
to zero-frequency limit




Synthetic NEMD

O Perturb usual equations of motion in some way

* Artificial “synthetic ” perturbation need not exist in nature

O For transport coefficient of interest Ly, J; = L; X,

1]°

* Identify the Green-Kubo relation for the transport coefficient

o0

Ly = [{J(2)J (0))dr c.g., D= T<vx(2') v, (0))dr
0 0

* Invent a fictitious field F,, and its coupling to the system such that

the dissipative flux is J; :

pative fluxis J;  pai__; g

jre

* ensure that

equations of motion correspond to an incompressible phase space
equations of motion are consistent with periodic boundaries

equations of motion do not introduce inhomogeneities
* apply a thermostat
* couple F, to the system and compute the steady-state average (J(t))
° then (J:(®))

L.= lim lim*—~~

Y E, 50150 F,
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Phase Space

O Underlying development assumes that equations of motion
correspond to an incompressible phase space

V-F=Vq q+V -p=0
O This can be ensured by having the perturbation derivable

from a Hamiltonian
H"™ =H+ A(p,q)-(?)

qzag[p =p/m+Ap-f(t)
' QH "¢
p=-"g =F@-A, 10

O Most often the equations of motion are not derivable from a
Hamiltonian

* but are still formulated to be compatible with an incompressible
phase space
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Diffusion: An Inhomogeneous Approach

O Artificially distinguish particles by “color”

O Introduce a species-changing plane

Molecules moving this way @+«
across wall get coloredred —T>® Those crossing this way get blue




Diffusion: An Inhomogeneous Approach

O Artificially distinguish particles by “color”

O Introduce a species-changing plane

Considering periodic boundaries,
this creates a color gradient

O Problems
* Difficult to know form of inhomogeneity in color profile

* Cannot be extended to multicomponent diffusion

14




Selt-Diftusion: Perturbation

O Green-Kubo relation

D= (v, (0)-v,(0))dT = [(r(1)-v,(0))dT
0 0

O Label each molecule with one of two “colors”

* each color given to half the molecules

O Apply Hamiltonian perturbation ! o—
N
H=Hy= cnif (1) ©0g ©
< O
1 000 %0
O New equations of motion e e y o ®
q=p/m ©e 0’ 0:.
O
.isz;'x_l_ if(t) ¢ ’.’ ..
p=F(q)-A () i _ ) o @ Seo0 g

i(y,z) i(y,z)

O System remains homogeneous
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Self-Diffusion: Response

O Appropriate response variable is the “color current”
1 N
Jx(t) = _Zcivix(t)
V i=l1

O According to linear response theory

1, 0) = BV [ds (T, =), (0), () e
.—>
O In the canomcal ensemble 00g O
(J (D), (0)) = Z%< Vi (0)v(0)) 000 %% o0
SIRETR
2 ZC Vi (t)vxz (O) o ’.” o ..
®
o0 0 o :.
- ﬁ<"x (1), (0)) a

O Back to Green-Kubo relation | =7 M i =0
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Thermostatting

O External field does work on the system
* this must be dissipated to reach steady state
O Thermostat based on velocity relative to total current density
* “peculiar velocity ”
Dix = Dix —C; ﬁzcjpjx
= Pix — ¢ Imp

* constrain kinetic energy

> p°/m=3NkT

* modified equations of motion
q; =p; /m
p,=F +ec f—oap,

* thermostatting multiplier

o =




Shear Viscosity:
Boundary-Driven Algorithm

O Homogeneous algorithm for boundary-driven shear is possible

* unique to shear viscosity

O Lees-Edwards shearing periodic boundaries (sliding brick)

* Image cells in plane above and below central cell move

* Peculiar velocity of all images equal

pix = Pix _7/Ly

dv
« Image velocity given by shear rate 7 = d—yx

18
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Shear Viscosity:
Boundary-Driven Algorithm

O Homogeneous algorithm for boundary-driven shear is possible

* unique to shear viscosity

O Lees-Edwards shearing periodic boundaries (sliding brick)
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Shear Viscosity:
Boundary-Driven Algorithm

O Homogeneous algorithm for boundary-driven shear is possible

* unique to shear viscosity

O Lees-Edwards shearing periodic boundaries (sliding brick)

* Image cells in plane above and below central cell move

dv,

« Image velocity given by shear rate 7 = 0

* Peculiar velocity of all images equal

pix = Pix _7/Ly
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Shear Viscosity:
Boundary-Driven Algorithm

O Homogeneous algorithm for boundary-driven shear is possible

* unique to shear viscosity

O Lees-Edwards shearing periodic boundaries (sliding brick)

* Image cells in plane above and below central cell move

dv
« Image velocity given by shear rate 7 = d—yx

. . . ® o0 o°
* Peculiar velocity of all images equal ®e ¢%0 0%
pix = Pix ~ 7/Ly ° “‘ “‘ ®
O Try the applet ®e ‘a‘o ‘a‘o ‘0
o0 o0 o0
o o0 o/® o
®¢ ¢%0 0% ¢
o0 o0 o0



http://www.eng.buffalo.edu/~kofke/applets/BoundaryShear.html
http://www.eng.buffalo.edu/~kofke/applets/BoundaryShear.html

Lees-Edwards Boundary Conditions

~ Molecule exiting

® ‘ ©0 here, in middle of
O

central cell
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Lees-Edwards Boundary Conditions

Ps Is replaced by one
</.—z/’—./ here, shifted over
toward the edge of
the cell

Shift distance = yLt

23




Lees-Edwards Boundary Conditions

And with a velocity
9 99 g 00 that is modified

according to the

O
O shear rate
O

24




Lees-Edwards Boundary: API

User's Perspective on the Molecular Simulation API

e




Lees-Edwards Boundary: Java Code

public class Space2D.BoundarySlidingBrick extends
Space2D.BoundaryPeriodicSquare

public void nearestImage (Vector dr) {
double delrx = delvx*timer.currentValue() ;
double cory;

cory = (dr.y > 0.0) ? Math.floor(dr.y/dimensions.y+0.5) :Math.ceil (dr.y/dimensions.y-0.5);
dr.x -= cory*delrx;

dr.x -= dimensions.x * ((dr.x > 0.0) ? Math.floor(dr.x/dimensions.x+0.5)
Math.ceil (dr.x/dimensions.x-0.5)) ;
dr.y -= dimensions.y * cory;

public void centralImage (Coordinate c) {
Vector r = c.r;
double cory = (r.y > 0.0) ? Math.floor(r.y/dimensions.y) : Math.ceil(r.y/dimensions.y-1.0);
double corx = (r.x > 0.0) ? Math.floor(r.x/dimensions.x) : Math.ceil (r.x/dimensions.x-1.0);
if (corx==0.0 && cory==0.0) return;
double delrx = delvx*timer.currentValue()
Vector p = c.p;

r.x -= cory*delrx;
r.x -= dimensions.x * corx;
r.y -= dimensions.y * cory;
pP.Xx -= cory*delvx;
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Limitations of Boundary-Driven Shear

O No external field in equations of motion
* cannot employ response theory to link to viscosity

O Lag time in response of system to initiation of shear
* cannot be used to examine time-dependent flows

O A fictitious-force method 1s preferable
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DOLLS-Tensor Hamiltonian: Perturbation

O An arbitrary fictitious shear field can be imposed via the
DOLLS-tensor Hamiltonian

N
H=H,+ Z‘L’Pi :(Vu(t))T
i=1
O Equations of motion
q,=p;,/m+q;-Vu
p,=F,—Vup,
* must be implemented with compatible PBC
O Example: Simple Couette shear

q,=p,/ m+ Y4,e,
p,=F-rp,e€,
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DOLLS-Tensor Hamiltonian: Response

O Appropriate response variable is the pressure tensor
1 N | | N
P(O)= 2 PP =3 2 5Fy
i=1 ij
O According to linear response theory

(P(1)) ==V [ ds(P(t - 5)P(0)}:Vu(s)
0

O Shear viscosity, via Green-Kubo

n = lim lim w

t—0y—>0 4
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SLLOD Formulation

O DOLLS-tensor formulation fails in more complex situations
* non-linear regime
* evaluation of normal-stress differences

* a simple change fixes things up

O SLLOD Equations of motion DOLLS
q,=p;/m+q;-Vu q,=p;/m+q;-Vu
p,=F —p,-Vu p,=F,—Vu-p,

Only change

O Example: Simple Couette shear

q, = pl./m+'}/qiyex q,=p,/ m+7yq,e,
pizFi_ypiyex pi:Fi_ypixey

O Methods equivalent for irrotational flows vu=(vu)"




Application

O NEMD usually introduces exceptionally large strain rates
. 8 -1
10° sec™’ or greater 2
* dimensionless strain rate V=7 (%)

* thus, e.g.,
m = 30g/mol; 0 = 3A; e/k=100K; y*=1.0 > y=5X10!" sec’!

O Shear-thinning observed even in simple fluids at these rates

O Very important to extrapolate to zero shear

7

/

Newtonian

«l/2
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