Lecture 24 Kernel Methods and Gaussian Processes

Bayesian linear models; kernel; Gaussian processes; case study

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

Overview of development

- Given X, y data for quantity of interest
- Linear model in input variable (*r*)
 - Develop probabilities of weights w from prior and data, p(w|X,y)
 - Evaluate f_* via
- Project into feature space (introduce basis functions), $\phi(x)$
 - Follow same overall procedure as model in linear inputs
- Recognize that "dot products" of feature vectors is all that matters
- Develop approach that goes straight to modeling the dot product, k(x, x')

We will walk through the major elements using a simple, specific example

• Formulate a model that reproduces the Lennard-Jones potential based on 3 data points: x = 1, 1.2, 1.5

Start with a linear model in terms of the single input parameter x

•
$$u(x) = w_1 + w_2 x$$

Input design matrix Output Weights (TBD) Select a Gaussian prior $X = \begin{pmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ 1 & x^{(3)} \end{pmatrix} = \begin{pmatrix} 1 & 1.0 \\ 1 & 1.2 \\ 1 & 1.5 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} u_{\mathrm{LJ}}(x^{(1)}) \\ u_{\mathrm{LJ}}(x^{(2)}) \\ u_{\mathrm{LJ}}(x^{(3)}) \end{pmatrix} = \begin{pmatrix} 0.00 \\ -0.89 \\ -0.32 \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \xrightarrow{\text{win Zero mean, Zero correlation, variance 10}}{\Sigma_p = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix}}$

> For this example, we assume some noise in y values: $\sigma_n \equiv 0.1$

• Posterior distribution of weights, via Bayes' rule, is Gaussian $p(\mathbf{w} \mid \mathbf{y}, X) \sim \mathcal{N}(\bar{\mathbf{w}}, A^{-1})$ $A^{-1} = (\sigma_n^{-2} X^{ op} X + \Sigma_p^{-1})^{-1} = \left(100. \begin{pmatrix} 1 & 1 & 1 \ 1 & 1.2 & 1.5 \end{pmatrix} \begin{pmatrix} 1 & 1.0 \ 1 & 1.2 \ 1 & 1.5 \end{pmatrix} + \begin{pmatrix} 0.1 & 0 \ 0 & 0.1 \end{pmatrix}
ight)^{-1} = \begin{pmatrix} 0.12 & -0.10 \ -0.10 & 0.08 \end{pmatrix}$ $\mathbf{\bar{w}} = \sigma_n^{-2} A^{-1} X^{\top} \mathbf{y} = 100 \begin{pmatrix} 0.12 & -0.10 \\ -0.12 & 0.08 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1.0 & 1.2 & 1.5 \end{pmatrix} \begin{pmatrix} 0.00 \\ -0.89 \\ 0.02 \end{pmatrix} = \begin{pmatrix} 0.13 \\ -0.10 \end{pmatrix}$

The posterior distribution of weights shows a strong correlation between slope and intercapt

• Prior

$$p(\mathbf{w}) \sim \mathcal{N}\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 10 & 0\\ 0 & 10 \end{pmatrix}\right)$$

• Posterior
$$p(\mathbf{w} \mid \mathbf{y}, X) \sim \mathcal{N}\left(\begin{pmatrix} 0.13\\ -0.10 \end{pmatrix}, \begin{pmatrix} 0.12 & -0.10\\ -0.10 & 0.08 \end{pmatrix}\right)$$

Intercept, w1

The estimated from the fit at any point is given as a Gaussian distribution

6

• Average the output from all possible linear models w.r.t. the From previous Gaussian with Gaussian posterior $p(f_* \mid \mathbf{x}_*, X, \mathbf{y}) = \int p(f_* \mid \mathbf{x}_*, \mathbf{w}) p(\mathbf{w} \mid \mathbf{y}, X) d\mathbf{w}$ $\sigma_n \equiv 0.1 \quad \Sigma_p = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix}$ predicted value input vector (just a scalar for this example) $= \mathcal{N}(\mathbf{x}_*^{\top} \mathbf{w}, \mathbf{x}_*^{\top} A^{-1} \mathbf{x}_*)$ slide stdev σ_n $u_{LJ}(x)$ this example) 0.5 mean Variance depends on x* 2.5 × $\mathcal{N}ig(0.13 - 0.44x, 012 - 0.19x + 0.08x^2ig)$ 1-5 2.0 -0.5Explore effects of parameters -1.0 in Mathematica... All uncertainties represented as 2 standard deviations

We can get a more effective model by projecting into feature space (i.e., adopting a basis)

• Add just one more function: $u(x) = w_1 x^{-12} + w_2 + w_3 x$ $\phi(x) = \begin{pmatrix} x & -1 \\ 1 \end{pmatrix}$

Input design matrix

Select a Gaussian prior

 $\Phi = \begin{pmatrix} (x^{(1)})^{-12} & 1 & x^{(1)} \\ (x^{(2)})^{-12} & 1 & x^{(2)} \\ (x^{(3)})^{-12} & 1 & x^{(3)} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1.0 \\ 0.11 & 1 & 1.2 \\ 0.008 & 1 & 1.5 \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} u_{\mathrm{LJ}}(x^{(1)}) \\ u_{\mathrm{LJ}}(x^{(2)}) \\ u_{\mathrm{LJ}}(x^{(3)}) \end{pmatrix} = \begin{pmatrix} 0.00 \\ -0.89 \\ -0.32 \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \quad \sum_p = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix}$

Output Weights (TBD)

-1.0

• Posterior distribution of weights, via Bayes' rule, is Gaussian $p(\mathbf{w} \mid \mathbf{y}, X) \sim \mathcal{N}(ar{\mathbf{w}}, A^{-1})$ $u_{1,1}(\mathbf{X}$ $A^{-1} = (\sigma_n^{-2} \Phi^\top \Phi + \Sigma_p^{-1})^{-1} = \begin{pmatrix} 0.06 & -0.15 & 0.11 \\ -0.15 & 0.52 & -0.37 \\ 0.11 & -0.37 & 0.27 \end{pmatrix}$ 0.5 2.5 2.0 -0.5 $ar{\mathbf{w}} = \sigma_n^{-2} A^{-1} X^{ op} \mathbf{y} = (1.45 \quad -3.67 \quad 2.21)^{ op}$

Model predictions can be expressed in terms of an inner product of a modified feature vector

 $oldsymbol{\phi}(x) = egin{pmatrix} x^{-12} \ 1 \end{pmatrix}$

 $\boldsymbol{\phi}_* \equiv \boldsymbol{\phi}(\mathbf{x}_*)$

 $\phi(x^{(3)}))$

• Here is the probability distribution of the prediction

$$f_* \mid \mathbf{x}_*, X, \mathbf{y} \sim N(\sigma_n^{-2} oldsymbol{\phi}_*^ op A^{-1} \Phi \mathbf{y}, oldsymbol{\phi}_*^ op A^{-1} oldsymbol{\phi}_*) \mid$$

- This can be written equivalently as $K = \Phi \Sigma_p \Phi^\top$ $f_* \mid \mathbf{x}_*, X, \mathbf{y} \sim \mathcal{N}(oldsymbol{\phi}_*^ op \Sigma_p \Phi^ op oldsymbol{\left(K + \sigma_n^2 I
 ight)^{-1} \mathbf{y}}$ $\Sigma_p = egin{pmatrix} 10 & 0 & 0 \ 0 & 10 & 0 \ \end{pmatrix}$ $egin{aligned} oldsymbol{\phi}_*^ op \Sigma_p oldsymbol{\phi}_*^ op \Sigma_p oldsymbol{\phi}^ op (K+\sigma_n^2 I)^{-1} \Phi \Sigma_p oldsymbol{\phi}_*) \end{aligned}$ $\Phi = egin{pmatrix} (x^{(1)})^{-12} & 1 & x^{(1)} \ (x^{(2)})^{-12} & 1 & x^{(2)} \ (x^{(3)})^{-12} & 1 & x^{(3)} \end{pmatrix} = egin{pmatrix} \phi(x^{(1)})^ op \ \phi(x^{(2)})^ op \ \phi(x^{(3)})^ op \ \phi(x^{(3)})^ op \end{pmatrix}$
 - Everything is in terms of $\phi \Sigma_{\rm p} \phi$

8

Modified feature vector $\Phi^ op = ig(\phi(x^{(1)}) \quad \phi(x^{(2)})$ $oldsymbol{\psi}(\mathbf{x})\equiv\Sigma_p^{1/2}oldsymbol{\phi}(\mathbf{x})=\sqrt{10}(x^{-12} \hspace{0.1in} 1 \hspace{0.1in} x)^ op$

Model predictions can be expressed in terms of an inner product of a modified feature vector

$$\begin{split} f_* \mid \mathbf{x}_*, X, \mathbf{y} \sim \mathcal{N}(\overleftarrow{\boldsymbol{\phi}_*^\top \Sigma_p \Phi^\top} (K + \sigma_n^2 I)^{-1} \mathbf{y}^{-1} \mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{y$$

We can bypass the features and weights prior (Σ_{p}): Define model directly in term of the inner product

• "kernel trick"
$$oldsymbol{\psi}(x) \cdot oldsymbol{\psi}(x') o k(x,x')$$

$$egin{aligned} f_* \mid \mathbf{x}_*, X, \mathbf{y} &\sim \mathcal{N}(oldsymbol{\phi}_*^ op \Sigma_p \Phi^ op ig(K + \sigma_n^2 Iig)^{-1} \mathbf{y} \ oldsymbol{\phi}_*^ op \Sigma_p oldsymbol{\phi}_* oldsymbol{-} oldsymbol{\phi}_*^ op \Sigma_p \Phi^ op ig(K + \sigma_n^2 Iig)^{-1} oldsymbol{\Phi} \Sigma_p oldsymbol{\phi}_* ig) \end{aligned}$$

$$oldsymbol{\phi}_*^ op \Sigma_p \Phi^ op o ig(k(x_*,x^{(1)}) \quad k(x_*,x^{(2)}) \quad k(x_*,x^{(3)})ig) \equiv k_*$$

 $oldsymbol{\phi}_*^ op \Sigma_n oldsymbol{\phi}_*^ op ok k(x_*,x_*)$ $K
ightarrow egin{pmatrix} k(x^{(1)},x^{(1)}) & k(x^{(1)},x^{(2)}) & k(x^{(1)},x^{(3)}) \ k(x^{(2)},x^{(1)}) & k(x^{(2)},x^{(2)}) & k(x^{(2)},x^{(3)}) \ k(x^{(3)},x^{(1)}) & k(x^{(3)},x^{(2)}) & k(x^{(3)},x^{(3)}) \end{pmatrix}$ \checkmark All training data

We can bypass the features and weights prior (Σ_p): Define model directly in term of the inner product

• "kernel trick" $\boldsymbol{\psi}(x) \cdot \boldsymbol{\psi}(x') o k(x,x')$

$$egin{aligned} f_* \mid \mathbf{x}_*, X, \mathbf{y} &\sim \mathcal{N}(k_*^ op \left(K + \sigma_n^2 I
ight)^{-1} \mathbf{y}, \ k(x_*, x_*) - k_*^ op \left(K + \sigma_n^2 I
ight)^{-1} k_*
ight) \ \phi_*^ op \Sigma_p \Phi^ op &
ightarrow \left(k(x_*, x^{(1)}) \quad k(x_*, x^{(2)}) \quad k(x_*, x^{(3)})
ight) \equiv k_*^ op \ \phi_*^ op \Sigma_p \phi_*^ op &
ightarrow k(x_*, x_*) \ K &
ightarrow \left(egin{aligned} k(x^{(1)}, x^{(1)}) & k(x^{(1)}, x^{(2)}) & k(x^{(1)}, x^{(3)}) \ k(x^{(2)}, x^{(1)}) & k(x^{(2)}, x^{(2)}) & k(x^{(2)}, x^{(3)}) \ k(x^{(3)}, x^{(1)}) & k(x^{(3)}, x^{(2)}) & k(x^{(3)}, x^{(3)}) \ \end{pmatrix} & \longleftarrow ext{All training data} \end{aligned}$$

The kernel function, freed from the features, can have any functional form that works

• The Radical Basis Function (RBF) is a popular choice

Me

$$k(x, x') = \sigma_f^2 \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right) \qquad I_D = 0.1, \ \sigma_n = 0.1, \ \sigma_f = 0.05$$
• Application to LJ example
$$f_* \mid \mathbf{x}_*, X, \mathbf{y} \sim \mathcal{N}(k_*^\top (K + \sigma_n^2 I)^{-1} \mathbf{y}, \\ k(x_*, x_*) - k_*^\top (K + \sigma_n^2 I)^{-1} k_*) \\ K = \begin{pmatrix} 0.05 & 0.007 & 0 \\ 0.007 & 0.05 & 0.005 \\ 0 & 0.005 & 0.05 \end{pmatrix} k_* = \begin{pmatrix} k(x_*, x^{(1)}) \\ k(x_*, x^{(2)}) \\ k(x_*, x^{(3)}) \end{pmatrix} \mathbf{y} = \begin{pmatrix} 0.00 \\ -0.89 \\ -0.32 \end{pmatrix} -1.0$$
• on the set of the se

This is a *kernel method*. It may instead be seen as a *Gaussian process*. First, review multivariate Gaussian

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \qquad \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pp} \end{pmatrix}$$

• The probability density function is
$$f_{\mathbf{X}}(\mathbf{x}) = (2\pi)^{-k/2} (\det \boldsymbol{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

$$\overset{x_2, x_3, x_3}{\overset{x_2, x_3, x_3}{\overset{x_3, x_3, x_3}{\overset{x_3, x_3, x_3}{\overset{x_3, x_3}{\overset{x_3, x_3}{\overset{x_3, x_3}{\overset{x_3, x_3}{\overset{$$

-4

Each dot is a sample from the indicated multivariate Gaussian. Each plot shows 50,000 samples

A *Gaussian process* is the extension of a multivariate Gaussian to a continuum of variables

When modeling via a Gaussian process, we adopt a Gaussian prior with covariance k(x, x') $\operatorname{cov}(x, x') = k(x, x') = \sigma_f^2 \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell_p^2}\right)$

The decay length $\ell_{\rm D}$ affects the smoothness of the sampled functions

The posterior is developed from Bayes' rule. It is the same Gaussian as from the kernel method

$$f_* \mid \mathbf{x}_*, X, \mathbf{y} \sim \mathcal{N}(k_*^\top (K + \sigma_n^2 I)^{-1} \mathbf{y},$$
For these examples,
three (x,y) training
points are generated at
random
$$I_{D=0.5, \sigma_n=0.1, \sigma_f=0.5} \qquad k(x_*, x_*) - k_*^\top (K + \sigma_n^2 I)^{-1} k_*)$$

$$I_{D=1, \sigma_n=0, \sigma_f=0.5} \qquad I_{D=1, \sigma_n=0, \sigma_f=0.5} \qquad I_{D=0.5, \sigma_n=0.05, \sigma_f=0.1}$$

More generally, the kernel k(x,x') can be interpreted as a distance measure

• This is consistent with its connection to the dot product

 $oldsymbol{\psi}(x) \cdot oldsymbol{\psi}(x') o k(x,x')$

- Smaller dot product $\rightarrow x$ and x' are more orthogonal

• For RPG kernel, covariance depends only on separation, and decreases with increasing distance

	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	1.1×10^{-7}	$\texttt{1.6}\times\texttt{10}^{-9}$	Θ	0	0	Θ	0	i
5	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	1.1×10^{-7}	$\texttt{1.6}\times\texttt{10}^{-9}$	0	0	0	0	
- -	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	1.1×10^{-7}	$\texttt{1.6}\times\texttt{10}^{-9}$	0	Θ	0	
	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	$\texttt{4.8} \times \texttt{10}^{-6}$	1.1×10^{-7}	$\texttt{1.6}\times\texttt{10}^{-9}$	0	0	
	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	1.1×10^{-7}	$\texttt{1.6}\times\texttt{10}^{-9}$	0	
	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	1.1×10^{-7}	1.6×10^{-9}	
	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	1.1×10^{-7}	
	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	4.8×10^{-6}	
	1.1×10 ⁻⁷	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	0.00012	
	1.6×10^{-9}	1.1×10^{-7}	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	0.0019	
	0	$\texttt{1.6}\times\texttt{10}^{-9}$	1.1 $ imes$ 10 ⁻⁷	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	0.018	
	Ø	0	$1.6 imes 10^{-9}$	$1.1 imes 10^{-7}$	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	0.11	
	Ø	0	0	$\texttt{1.6}\times\texttt{10}^{-9}$	$\texttt{1.1}\times\texttt{10}^{-7}$	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	0.37	
	0	0	0	0	1.6×10^{-9}	1.1 $ imes$ 10 ⁻⁷	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	0.78	
	o	0	0	0	0	1.6 $ imes$ 10 ⁻⁹	1.1 \times 10 ⁻⁷	4.8×10^{-6}	0.00012	0.0019	0.018	0.11	0.37	0.78	1.0	l

p = 1

We are much more interested in cases where the *x* data are multidimensional

- E.g, **x** is formed from the coordinates of several atoms
- The RBF kernel is written to accommodate this

$$k(\mathbf{x},\mathbf{x}') = \sigma_f^2 \exp \left(-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\ell_{
m D}^2}
ight)$$

- $-\ell_{\rm D}$ might be different for different components of x
- Nothing else changes for this generalization

Gaussian processes form *nonparametric models*. There are no parameters to fit

- Hyperparameters are tuned to improve performance
 - $\{\boldsymbol{\ell}_{\mathrm{D}}\}, \, \boldsymbol{\sigma}_{f}, \, \boldsymbol{\sigma}_{n} \qquad k(\mathbf{x}, \mathbf{x}') = \sigma_{f}^{2} \exp\left(-\frac{\|\mathbf{x} \mathbf{x}'\|^{2}}{2\ell_{\mathrm{D}}^{2}}\right)$

- Hyperparameter optimization is performed by maximizing log-likelihood of observing the training data $\log p(\mathbf{y} \mid X) = -\frac{1}{2} \mathbf{y}^{\top} (K + \sigma_n^2 I)^{-1} \mathbf{y} - \frac{1}{2} \log |K + \sigma_n^2 I| - \frac{n}{2} \log 2\pi$
- Calculation of a model estimate is just a dot product with *all* of the *n* training data

$$egin{aligned} & (k(\mathbf{x}_*,\mathbf{x}^{(1)}) & \cdots & k(\mathbf{x}_*,\mathbf{x}^{(n)})) & 1 imes n & ext{once for all } \mathbf{x}_* \ f_* \mid \mathbf{x}_*, X, \mathbf{y} & \sim \mathcal{N}\left(\mathbf{x}_*^{ op}\left(K + \sigma_n^2 I\right)^{-1} \mathbf{y}, & k(x_*,x_*) - k_*^{ op}\left(K + \sigma_n^2 I\right)^{-1} k_*
ight) \end{aligned}$$

Other concepts are of importance in application of ML to computational chemistry

- Data augmentation
 - Exploiting symmetries in the physical system to generate new data without additional calculation, by permuting the elements of the x vector that leaves the system effectively unchanged
 - E.g., swapping coordinates of two oxygen atoms in CO₂
- Transfer learning
 - Using a pre-trained model as a start to training a similar model
 - e.g., a NN is trained on low-level quantum chemical data and then improved by fewer higher-level training data
- Active learning
 - Using uncertainty in estimate from Gaussian process to determine whether to do new calculations to generate additional training data

Case study: Gaussian-process modeling of CO2-Ne pair potential from ab initio training data

- Steps performed in study
 - Select configurations for data generation
 - Perform ab initio energy calculations
 - Tabulate (x, y) data, form into training and test sets
 - Optimize hyperparameters via maximization of log-likelihood
 - Evaluate via RMSD of test set
 - Apply to calculation of virial coefficients, which can be compared to experiment

Interpolation of intermolecular potentials using Gaussian processes

Data generation aims to sample a broad, homogeneous representation of configurations

• Only two coordinates are needed to specify configuration

	Test gr	rcube		
System	Coordinate	Range	Spacing	Test points
CO ₂ –Ne	r	1.5–10 Å	0.116 Å	1 122
	$\cos heta$	0–1	0.05	

TABLE I. Coordinates for the test (grid or LHC) data for each system.

Data generation aims to sample a broad, homogeneous representation of configurations

High-level ab initio calculations of the energy are performed for each configuration

- MP2 theory
- aug-cc-pVTZ basis set
- 1122 configurations from LHC
- Molpro software

X data provides an overspecified representation of configuration

• **x** is formed from three distances

$1/r_{O1-Ne}$	$1/r_{O2-Ne}$	$1/r_{\text{C-Ne}}$	energy
0.350294	0.32761	0.321279	0.0000884092
0.131045	0.130434	0.128681	$-2.93045 imes 10^{-6}$
0.140514	0.159722	0.124223	$-6.68865 imes 10^{-6}$
0.368198	0.352168	0.326241	0.00075408
0.204061	0.260179	0.166751	-0.0000987712
0.402868	0.393012	0.341903	0.0038665
0.290997	0.27914	0.272258	-0.00026795
0.232019	0.311852	0.18388	-0.00016284
0.113186	0.121581	0.104731	$-1.46951 imes 10^{-6}$
0.247046	0.252365	0.224879	-0.00013464
0.134051	0.13521	0.129853	$-3.39012 imes 10^{-6}$
•	•	•	•

Also, it is found that performance improves by using 1/r rather than r to form the **x** vector

Data augmentation exploits symmetries to provide additional data for free

• These have different **x** but the same energy

Gaussian process kernel includes the symmetry of the molecules

• Different $\ell_{\rm D}$ for each coordinate

$$\kappa(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \prod_{i=1}^{N_D} \exp\left[-\frac{(x_i - x_i')^2}{2l_i^2}\right]$$

• Kernel is a sum over symmetric transformations

$$k_{\text{sym}}(\mathbf{x}, \mathbf{x}') = \sum_{g \in G} \kappa(g\mathbf{x}, \mathbf{x}')$$

Agreement with test data improves with size of training set

FIG. 1. RMSE against LHC size for CO₂–Ne. The lowest energy in the grid data is $-2.90 \times 10^{-4} E_h$.

A follow-up study for CO2-Ar shows excellent agreement with experiment

- CCSD(T) theory, extrapolation to infinite basis set
- 2-and 3-body potentials used to compute mixture virial coefficients up to 5th order

Fig. 3 Comparison of the first-principles predictions for CO₂-Ar mixtures *via* our virial calculations. (a) Speed of sound measurements³² at $\phi_{CO2} = 0.5$; and (b) Joule-Thomson coefficient measurements³³ at $\phi_{CO2} = 0.464$. All predictions are converged with respect to number of virial terms.

Suggested Reading/Viewing

- C. E. Rasmussen & C. K. I. Williams, *Gaussian Processes for Machine Learning*, the MIT Press, 2006. Chapters 1 and 2.
 - www.GaussianProcess.org/gpml
- *Quantum Chemistry in the Age of Machine Learning*, edited by P. O. Dral
 - Chapter 9. Kernel Methods, Max Pinheiro Jr. and Pavlo O. Dral
 - Chapter 10. Bayesian Inference, Wei Liang and Hongsheng Dai
 - Posted on UBLearns
- A Visual Exploration of Gaussian Processes
 - https://distill.pub/2019/visual-exploration-gaussian-processes/