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Overview of development
• Given X, y data for quantity of interest
• Linear model in input variable (r)

– Develop probabilities of weights w from prior and data, p(w|X,y)
– Evaluate f* via 

• Project into feature space (introduce basis functions), ϕ(x)
– Follow same overall procedure as model in linear inputs

• Recognize that “dot products” of feature vectors is all that 
matters

• Develop approach that goes straight to modeling the dot 
product, k(x, x')
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We will walk through the major elements 
using a simple, specific example
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• Formulate a model that reproduces the Lennard-Jones 
potential based on 3 data points: x = 1, 1.2, 1.5



Start with a linear model in terms of the 
single input parameter x
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• u(x) = w1 + w2x
Input design matrix          Output    Weights (TBD)

• Posterior distribution of weights, via Bayes’ rule, is Gaussian
For this example, we assume some 
noise in y values: σn ≡ 0.1

Select a Gaussian prior 
with zero mean, zero 

correlation, variance 10 



The posterior distribution of weights shows a 
strong correlation between slope and intercapt
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• Prior

• Posterior



The estimated from the fit at any point is 
given as a Gaussian distribution
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• Average the output from all 
possible linear models w.r.t. the 
Gaussian posterior

σn ≡ 0.1

All uncertainties represented as 2 standard deviations

predicted 
value

input vector
(just a scalar for 
this example)

mean Variance 

depends on x*

Gaussian with 
stdev σn

From previous 
slide

Explore effects of parameters 
in Mathematica…



We can get a more effective model by projecting 
into feature space (i.e., adopting a basis)
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• Add just one more function: u(x) = w1x−12 + w2 + w3x
Input design matrix               Output    Weights (TBD)

• Posterior distribution of weights, via Bayes’ rule, is Gaussian
For this example, we assume some 
noise in y values: σn ≡ 0.1

Select a Gaussian prior 
with zero mean, zero 

correlation, variance 10 



Model predictions can be expressed in terms of 
an inner product of a modified feature vector
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• Here is the probability distribution of the prediction

• This can be written equivalently as

• Everything is in terms of ϕ Σp ϕ   

• Modified feature vector 



Model predictions can be expressed in terms of 
an inner product of a modified feature vector
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• It’s all dot products



We can bypass the features and weights prior (Σp): 
Define model directly in term of the inner product
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• “kernel trick”

All training data



We can bypass the features and weights prior (Σp): 
Define model directly in term of the inner product
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• “kernel trick”

All training data



The kernel function, freed from the features, 
can have any functional form that works
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• The Radical Basis Function (RBF) is a popular choice

• Application to LJ example

Mean as function of x* 



This is a kernel method. It may instead be seen as a 
Gaussian process. First, review multivariate Gaussian
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• The probability density function is

x2, x3, x3

x1, x1, x2

x2, x3, x3 x2, x3, x3

x1, x1, x2
x1, x1, x2

Each dot is a sample from the 
indicated multivariate Gaussian. 
Each plot shows 50,000 samples



A Gaussian process is the extension of a 
multivariate Gaussian to a continuum of variables
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p = 3

p = 4

p = 8

p = 15

p = 50



When modeling via a Gaussian process, we 
adopt a Gaussian prior with covariance k(x, x' )
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The decay length ℓD affects the smoothness of the sampled functions



The posterior is developed from Bayes’ rule. It 
is the same Gaussian as from the kernel method
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For these examples, 
three (x,y) training 
points are generated at 
random

This one has no uncertainty in training data



More generally, the kernel k(x,x') can be 
interpreted as a distance measure
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• This is consistent with its connection to the dot product

– Smaller dot product è x and x' are more orthogonal

• For RPG kernel, covariance depends only on separation, and 
decreases with increasing distance

p = 15



We are much more interested in cases 
where the x data are multidimensional
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• E.g, x is formed from the coordinates of several atoms

• The RBF kernel is written to accommodate this

– ℓD might be different for different components of x

• Nothing else changes for this generalization



Gaussian processes form nonparametric 
models. There are no parameters to fit
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• Hyperparameters are tuned to improve performance
– {ℓD}, σf , σn

• Hyperparameter optimization is performed by 
maximizing log-likelihood of observing the training data

• Calculation of a model estimate is just a dot product with 
all of the n training data

1× n

n × n n × 1

n × 1; compute only 
once for all x*



Other concepts are of importance in application 
of ML to computational chemistry
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• Data augmentation
– Exploiting symmetries in the physical system to generate new data without 

additional calculation, by permuting the elements of the x vector that leaves 
the system effectively unchanged

• E.g., swapping coordinates of two oxygen atoms in CO2 

• Transfer learning
– Using a pre-trained model as a start to training a similar model

• e.g., a NN is trained on low-level quantum chemical data and then improved 
by fewer higher-level training data

• Active learning
– Using uncertainty in estimate from Gaussian process to determine whether to 

do new calculations to generate additional training data



Case study: Gaussian-process modeling of 
CO2-Ne pair potential from ab initio training data 

21

• Steps performed in study
– Select configurations for data generation
– Perform ab initio energy calculations
– Tabulate (x, y) data, form into training and 

test sets
– Optimize hyperparameters via maximization 

of log-likelihood
– Evaluate via RMSD of test set
– Apply to calculation of virial coefficients, 

which can be compared to experiment

CO2

Ne

Rigid model



Data generation aims to sample a broad, 
homogeneous representation of configurations
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• Only two coordinates are needed to specify configuration

• A latin hypercube is used find random but well dispersed 
configurations

r θ 

Preece & Milanović, 10.1109/TPWRS.2015.2417204

cos θ 

r



Data generation aims to sample a broad, 
homogeneous representation of configurations
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r θ 

cos θ 

r

Energy and geometry 
filters are applied to 
eliminate irrelevant data



High-level ab initio calculations of the 
energy are performed for each configuration
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• MP2 theory

• aug-cc-pVTZ basis set
• 1122 configurations from LHC

• Molpro software



X data provides an overspecified 
representation of configuration
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• x is formed from three distances
1/rO1-Ne   1/rO2-Ne   1/rC-Ne        energy

Also, it is found that 
performance improves by 
using 1/r rather than r to 
form the x vector



Data augmentation exploits symmetries to 
provide additional data for free
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• These have different x but the same energy 



Gaussian process kernel includes the 
symmetry of the molecules
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• Different ℓD for each coordinate

• Kernel is a sum over symmetric transformations



Agreement with test data improves with size 
of training set
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x formed from r

x formed from 1/r



A follow-up study for CO2-Ar shows 
excellent agreement with experiment
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• CCSD(T) theory, extrapolation to infinite 
basis set

• 2-and 3-body potentials used to compute 
mixture virial coefficients up to 5th order 



Suggested Reading/Viewing
• C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for 

Machine Learning, the MIT Press, 2006. Chapters 1 and 2.
– www.GaussianProcess.org/gpml

• Quantum Chemistry in the Age of Machine Learning, edited by 
P. O. Dral
– Chapter 9. Kernel Methods, Max Pinheiro Jr. and Pavlo O. Dral
– Chapter 10. Bayesian Inference, Wei Liang and Hongsheng Dai
– Posted on UBLearns

• A Visual Exploration of Gaussian Processes
– https://distill.pub/2019/visual-exploration-gaussian-processes/
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http://www.gaussianprocess.org/gpml
http://www.gaussianprocess.org/gpml

