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Molecular Dynamics Integration

O Equations of motion in cartesian coordinates

dr. p; _
7; = ZJ r=(.n) } 2-dimensional space (for example)
do; o P
dt g F; = ZFU pairwise additive forces
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£

. . . . DE :F
O Previously, we examined basic MD integrators

* Verlet family
Verlet; Leap-frog; Velocity Verlet
* Popular because of their simplicity and effectiveness
O Today we will consider
* Symmetry features that make the Verlet methods work so well

* Multiple-timestep extensions of the Verlet algorithms




Integration Algorithms

O Features of a good integrator
* minimal need to compute forces (a very expensive calculation)
* good stability for large time steps
* good accuracy

* conserves energy and momentum
noise less important than drift

O The true (continuum) equations of motions display certain
symmetries
* time-reversible
* area-preserving (symplectic)
O Good integrators can be constructed by paying attention to
these features




Symmetry

O An object displays symmetry if some transformation leaves
it (or something about 1t) unaltered
Original
shape

90° rotation

Horizontal
reflection




O

Time Symmetry
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° e.g., motion in a constant
gravitational field

2
x(1) =xg +vot + %gt

v(t)=vy+ gt
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dar; P
a; _Ppj
e Substitution dt  m R
do .
p—>-p P _ F,
{ —> —t dt

leaves equations
of motion unchanged
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An Irreversible Integrator
O Forward Euler

* well known to be quite bad
r(t+ot)=r(t)+p(t)ot+ %F(t)&2 unit mass
p(t+ot)=p(t)+ F(¢)ot
O Examine time reversibility

* Assume we have progressed forward in time an increment 0t;
positions and momenta are now Yy (1),p r(?)




An Irreversible Integrator
O Forward Euler

* well known to be quite bad
r(t+ot)=r(t)+p(t)ot+ %F(t)&2 unit mass
p(t+ot)=p(t)+ F(¢)ot
O Examine time reversibility

* Assume we have progressed forward in time an increment o,
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* Reverse time, and step back to original condition
(1, + 51— 8) =¥ (1, + 51) + P (1, + 50)(~60) + LF (1, + 50)(~61)°
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An Irreversible Integrator
O Forward Euler

* well known to be quite bad
r(t+6t) =r(t) +p()t + LF()5t*  unit mass
p(t+ot) =p(t) + F(t)ot
O Examine time reversibility

* Assume we have progressed forward in time an increment 0t,
positions and momenta are now Yr(1),p r(?)

* Reverse time, and step back to original condition
(1, + 81— 81) = ¥ (1, + 1) + P (1, + 5)(~60) + LF (1, + 50)(~61)°
p,.(t, +0t=0t)=p s, +0t) + F(¢t, + 61)(-1)
* Insert from above for v (1, +1),p (¢, + 6t)
r.(t)= [rf (t,)+p(t,)5t + %F(to)aﬂ +[p(t,) + F(t,)5¢](~51) + LF(t, + 50)(~5¢)°

P, (6,) =[P (t,) + F(1,)5t |+ F(t, + 50)(=51)




An Irreversible Integrator
O Forward Euler

* well known to be quite bad
r(t+6t) =r(t) +p()t + LF()5t*  unit mass
p(t+ot) =p(t) + F(t)ot
O Examine time reversibility

* Assume we have progressed forward in time an increment o,
positions and momenta are now Yr(1),p r(?)

* Reverse time, and step back to original condition
(1, + 81— 81) = ¥ (1, + 1) + P (1, + 5)(~60) + LF (1, + 50)(~61)°
p,.(t, +0t=0t)=p s, +0t) + F(¢t, + 61)(-1)
* Insert from above for x(t, +6t),p £ (1, + 6t); Cancel
r.(f,)= [rf (1) + pUZIot + ZF(%)&Z] +[pes) +F(1,)8t](~51) + L F(t, + 5t)(~5t)
P, (6,) =[P (t,) + F(1,)5t |+ F(t, + 50)(=51)




An Irreversible Integrator
O Forward Euler

* well known to be quite bad
r(t+ot)=r(t)+p(t)ot+ %F(t)&2 unit mass
p(t+ot)=p(t)+ F(¢)ot
O Examine time reversibility

* Assume we have progressed forward in time an increment o,
positions and momenta are now Yy (1),p r(?)

* Reverse time, and step back to original condition
1 (1, + 8t = 80) =1/ (t, +80) +p (t, + 5)(~61) + LF (1, + 56)(~5t)°
p,.(t, +0t=0t)=p s, +0t) + F(¢t, + 61)(-1)
* Insert from above for v (i, +6t),p /1 (¢, + 6t); Simplify
r,(t,) =1/ (t,) + 3[F(t, + 5) = F(t,)] o’
p,(t,)=p () —[F(, +5t) —F(z,)] ot Q
* Equal only in limit of zero time step

Inequality indicates lack of time reversibility

Verlet integrators are time reversible
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Symplectic Symmetry 1.

O Consider motion of a single particle in 1D

Described using a 2D phase space (X,p)

Hamiltonian ~ H(p,x)=1p”>+V(x) unit mass
Equations of motion [ gy of dp oH
=t_—=p|l ==
dt op dt ox

Phase space

/ 7 {p(t),x(t)} trajectory
S

Forthcoming result are easily generalized to higher dimensional
phase space, but hard to visualize
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Symplectic Symmetry 2.

O Consider motion of a differential element through phase space

* Shape of element is distorted by motion

* Area of the element is preserved

p p p
¥ ’_x
p p p

|
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O This is a manifestation of the symplectic symmetry of the equations

of motion
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Classical Harmonic Oscillator

O Exactly solvable example  H(p,x)=1p*+1x*

|
g P x(0) = x,
dp _ p(0) = pg

dt

O Solution 1 - C7 \

X =+xycost + pysint

P =—Xysint + pycost 0 )(\

H(t) = % pg + %xg = constant
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Liouville Formulation 1.

O Operator-based view of mechanics

O Very useful for deriving symplectic, time-reversible
Integration schemes

O Consider an arbitrary function of phase-space coordinates
* and thereby a function of time
f(x(®), p(®))
- time derivative is f =x%—§+p§—£

O Define the Liouville operator

0 %)
7 = :
I x8x+p8p

O So

f=iLf
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Liouville Formulation 2.

O Operator form

af _.
o

O This has the solution
f(®)=e"1(0)
* in principle this gives f at any time t
* in practice it is not directly useful
O Let f be the phase-space vector  f=T() = (x(1), p(t))"
* then the solution gives the trajectory through phase space
O Harmonic oscillator

x)| ([ cost sint)fx,
p | —sins cost Do

- cost sint
mm) o =( ]

—sint CoOst
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Separation of Liouville Operator 1.

O Position and momentum parts

iLExi+ ) —

o0x

= iL}C + in

O Propagator of either part can be solved analytically by itself

Jd| x
i, xax(p]

Jd| x
L = p— -

x(?)
p()
x(1)
p(t)

.

Xo + Dol St _ 1 ¢
Py 0 1
X0

Pyt Pyt




Separation of Liouville Operator 2.

O Liouville components do not commute
* result differs depending on order in which they are applied

(iL,)(iL,) = (iL, )(iL,)
O Otherwise we could write
oLt = Gt Hilpt _ iLyt Lt This is incorrect

=e

O We could then apply each propagator in sequence to move

the system ahead in time JLT _ it (einzF)
Advance
momentum
\ )
Y

Advance position
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Trotter Expansion

O The following relation does hold

eA*B — 1im

P
(eA/2PeB/PeA/2P)
P—x

* for example, if P =2

ATB _ (eA/4eB/2eA/4)(eA/4eB/2eA/4) ...plus a correction

_ (eA/4eB/ZeA/4eA/4eB/2eA/4)

(eA/4€B/26A/2eB/26A/4)

O We cannot work with infinite P
* but for large P

P o(p?
eA+B:(eA/2PeB/PeA/2P) o ( )




Formulating an Integrator

O Using the large-P approximation

P
8A+B _ (eA/ZPeB/PeA/2P)

O To advance the system over the time interval T

break Liouville operator into displacement parts iL, + iL,
write eiLT _ eiLxT+inT

apply the Trotter expansion, and interpret T/P as a discretized
time Ot

. . P
; iL. otl2 ; iL . ot/2
ALT — (e pO112 L5t L )

S L,5t/2 i st iL,5t/2 :
application of %"k %""2 P times advances the system

(approximately) through T

O An integrator formulated this way will be both time-
reversible and symplectic
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Examination of Integrator 1.

O Consider effect of one time step on positions and momenta

einat/zeiLxgtein&/z ( xj
P

O First apply exp(iL,6t/2)

L0112 x(0) | _ x(0)
p(0) p(0)+ p(0)%

O Then apply exp(iL,5t)

wal @ [ @+ p(3)er

p(0)+ p(0)4 p(0)+ p(0)2!
O Finally apply exp(1L,6t/2) again

iL 6¢/2[ X(O)"'P(%)& } [ X(0)+p(%)5z ]
e’ —

p(0)+ p(0)°f p(0)+ p(0)%L + p(%)%
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Examination of Integrator 2.

O One time step

. [ Ot
iL 85t/2 i1 &t iL.8t/2] x x(0)+p(7)5t
e? e el =

P )| pO)+ p(0)e+ p(d)er
O Examine effect on coordinate and momentum

p(0) = p(0)+%(F(0)+ F(%))

x(0) = x(0) + %.5( %)

= x(0) + x(0)3t+ 1 F(0)(6¢)’

O It’s the Velocity Verlet integrator!

O Higher-order algorithms can be derived systematically by
including higher orders in the Trotter factorization

* Not appealing because introduces derivatives of forces




A Deep Truth

O Verlet integrator replaces the true Liouville propagator by an
approximate one

' iL,ot/2 iL,ot/2
elLé't ~e " ezLx§te P

O We can make these equal by saying the approximate
propagator 1s obtained as the propagator of an approximate
Liouville operator

eiL§t+g _ leseudo :ein5t/2€iLx§tein5t/2

O or
v =iL+¢&/ot

inseudo
O This corresponds to some unknown Hamiltonian
* and this Hamiltonian is conserved by the Verlet propagator

* the Verlet algorithm will not likely give rise to drift in the true
Hamiltonian, since this “shadow ” Hamiltonian is conserved
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Other Decompositions

O Other choices for the decomposition of the Liouville
operator can be worthwhile

O Some choices:
* Separation of short- and long-ranged forces
* Separation of fast and slow time-scale motions

O Approach involves defining a reference system that is solved
more precisely (more frequently)

O Difference between real and reference is updated over a
longer time scale

O RESPA
* (Reversible) REference System Propagator Algorithm

»  Uses numerical solution of reference

O NAPA
* Numerical Analytical Propagator Algorithm

* Uses a reference that can be solved analytically .0, Tuckerman, Berne
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RESPA: Force Decomposition 1.

O Decompose force into short (F,) and long (F,) range
contributions

F(x) = S(x)F(x)+[1-S(x)] F(x)
= Fy(x)+ F(x)

* S(x) is a switching function that turns off the force at some
distance

O Liouville operator
%) %) %)

ZL:Xa—x‘FEg(X)@‘FF}(X)@

=iLS+Fl(x)aa
P




RESPA: Force Decomposition 2.

O Liouville operator P
iL = ZLS +F}(X)a—
P

O Trotter factorization of propagator

At 0 At o
: Ap ()| . Atp(x) S
ezLAt ~e? l(x)ap ezLSAt 2 l(x)ap

e

O Decompose term treating short-range forces

: 7 ot . 7 ot | At

O Long-range forces are computed # times less frequently than
short-range ones

* Long-range forces vary more slowly

* They are more expensive to calculate, because more pairs
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RESPA: Force Decomposition 3.

O Full RESPA propagator

At 0 St 0 . St o 1" At 0 At
; LR | 2AF ()% sl YF(x)& S F(x) - —
SLAL 2 ap{ez sSWap OB o275 Wap | 2 op ot

O Procedure

* Repeat for n steps
update short-range force, evaluate new momenta

evaluate new positions
* Evaluate long-range forces, update momenta

* Repeat




RESPA: Time-Scale Decomposition

O Many systems display disparate time scales of motion

*  Massive particles interacting with light ones

helium in argon

 Stiff and loose potentials

intramolecular and intermolecular forces

O Approach works as before
 Integrate fast motions (degrees of freedom) using short time step

* Integrate slow motions using long time step
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