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What color is the candy that | will select

from this urn?

[t won’t be white

e [t 1s one of these colors

black, red, green, blue, yellow, brown, orange, purple, gray
* The candy 1s not licorice
* The candy 1s M&Ms

* The color distribution of M&Ms 1s
24% blue, 20% orange, 16% green, 14% yellow, 13% red, and 13% brown

* What principle are you using to make your prediction?



Probability (like temperature ) is a more

subtle concept than you might realize

* Two interpretations are in common use

* Frequentist

— Probability describes the number of times each outcome would occur
if an infinite number of samples were taken on a population

— It can change only by changing the population

* Bayesian
— Probability quantifies how much information you have about an
outcome

— It can change as more information becomes available



Conditional probability is a core concept in

the Bayesian framework

« Here is a space of
outcomes of an
event:

— Select a number
uniformly at

random from 1 to
100

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
S




Conditional probability is a core concept in

the Bayesian framework

Events A and B
occur when
numbers are
selected in the
indicated regions,
respectively

What are
P(A)?
P(B)?

A
1 2 3 45 6 7 8 9 1011 12 13

18 19 20 21 22 23 24 25 26 27 28 29 30

B
14 15 16 17

31 32 33 34

35 36 37 38 39 40 41 42 43 44 45 46 47
52 53 54 55 56 57 58 59 60 61 62 63 64
69 70 71 72 73 74 75 76 77 78 79 80 81

86 87 88 89 90 91 92 93 94 95 96 97 98
S

48 49 50 51

65 66 67 68

82 83 84 85

99 100




Conditional probability is a core concept in

the Bayesian framework

Events A and B
occur when
numbers are
selected in the
indicated regions,
respectively

What are
P(A) = 34/100 = 0.34
P(B) = 12/100 = 0.12

A
1 2 3 45 6 7 8 9 1011 12 13

18 19 20 21 22 23 24 25 26 27 28 29 30

B
14 15 16 17

31 32 33 34

35 36 37 38 39 40 41 42 43 44 45 46 47
52 53 54 55 56 57 58 59 60 61 62 63 64
69 70 71 72 73 74 75 76 77 78 79 80 81

86 87 88 89 90 91 92 93 94 95 96 97 98
S

48 49 50 51

65 66 67 68

82 83 84 85

99 100




Conditional probability is a core concept in

the Bayesian framework

What 1s the
probability of B, 1f
we know that A
occurred?

Probability of B,
given A

P(B|A) = ?

A
1 2 3 45 6 7 8 9 1011 12 13

18 19 20 21 22 23 24 25 26 27 28 29 30

B
14 15 16 17

31 32 33 34




Conditional probability is a core concept in

the Bayesian framework

What 1s the
probability of B, 1f
we know that A
occurred?

Probability of B,
given A

P(B|A) = 8/34 = 0.24

A
1 2 3 45 6 7 8 9 1011 12 13

18 19 20 21 22 23 24 25 26 27 28 29 30

B
14 15 16 17

31 32 33 34
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Conditional probability is a core concept in

the Bayesian framework

 What 1s the
probability of B, 1f
we know that A
occurred?

Probability of B,
given A

P(BJA) = 8/34 = 0.24
— P(ANB)/P(A)
= (8/100)/(34/100)

A
1 2 3 45 6 7 8 9 1011 12 13

18 19 20 21 22 23 24 25 26 27 28 29 30

B
14 15 16 17

31 32 33 34




Conditional probability is a core concept in

the Bayesian framework

e This is the general [ A B
formula for the 1 2 3 45 6 7 8 9 1011 12 13|14 15 16 17
conditional 18 19 20 21 22 23 24 25 26 27 28 29 30|31 32 33 34
probability

P(BNA
P(B|A) = ( )

P(A)
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Conditional probability is a core concept in

the Bayesian framework

* [t works both ways | A B
. 14 15 16 17
 What 1s
P(A[B)? 31 32 33 34
48 49 50 51
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Conditional probability is a core concept in

the Bayesian framework

* It works both ways | A -
. 14 15 16 17
e What 1s
P(A|B) =8/12=0.67 31 32 33 34
P(A 4 B)? 48 49 50 51
P(B)?

P(A N B)/P(B)?
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Conditional probability is a core concept in

the Bayesian framework

* It works both ways | A -
- 14 15 16 17

 What s
P(A|B) =8/12 =0.67 31 32 33 34
P(A N B)=8/100 48 49 50 51

P(B) = 12/100
P(A N B)/P(B) = (8/100)/(12/100) = 8/12
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Conditional probability is a core concept in

the Bayesian framework

* We have expressions for the two conditional probabilities

P(BIA) = — (IE(Q)A) P(AB) = — %(;)B)
e Or

P(BNA) = P(B|A)P(A) P(ANB)= P(A|B)P(B)

e Of course, (A N B)and (B N A) are the same event, so

P(B|A)P(A) = P(AB)P(B)

— This i1s Bayes’ rule



Bayes’ rule provides a framework to update

probabilities when given new information
P(B|A)P(A) = P(A|B)P(B)

e [t’s use 1s best understood when written 1n this form

likelihood

P(A|B) |= P(A)|x

marginal

posterior prior

* The posterior 1s the updated probability in light of new

information
16



The various parts of Bayes’ formula can be

explained in words

 In our applications, event A is a model parameter(s) w or
outcome y having a particular value, and event B 1s data

« P(w) — this 1s the prior probability, the probability of the parameter
value (or outcome y) in the absence of data
— Could be a uniform distribution over an expected range

» P(w]|data) — this 1s the posterior probability, informed by data

« P(data|w) — this 1s the likelihood that we’d observe the given data,
given that the model parameter has the specified value

» P(data) — this is the marginal probability of the data, considering

all possible parameter values
17



The marginal probability is usually obtained

by integration, or normalization

B
P(data|w) :
P(w|data) = P B
(wldate) = P(w) > iy B>
4
* Consider all mutually exclusive B events S

P(A)=P(ANB;)+---+P(ANB,)
= P(A|B;)P(B;) +---+ P(A|B,)P(B,)

e Or more generally for our case

P(data) — /P(data|W)P(W)d9 The marginal probability does not

1 depend on w
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Regression is a process of induction:

specific 2 general

Given a finite set of training data

We want to infer a function or model f(x) that provides
accurate outputs for all possible input values

The data are insufficient to do this perfectly, 1.e., to solve for f

Hence, we impose conditions, or assumptions, regarding the
form of f

— Otherwise, any function that goes through the points would be valid



Two approaches to restrict the model are In

common use

 Restrict the class of functions that are considered
— e.g., linear functions of the variables in x

— Requires a decision on the richness of the class of functions considered
« Target may not be well described by the selected functions
» Adding more functions risks overfitting

* Assign a prior probability to all trial functions

— Higher probability assigned to more likely functions, e.g., those that
are smooth versus those that are erratic

— This admits and infinite range of functions; how to account for all of

them? (Gaussian processes does the trick)
20



Rather than going straight to functions, a weight-

space view can ease Iinto the Bayesian approach

e Standard linear model

Input Design matrix Output Weights

( xgl)\ (x D gD AT /y(l)\" (w1\
L) _ azéi) P - ,»,;?) m%?) %(.f) SZ rﬂxp’, fgs - y(oz) 45 “f2 p

\xlé’i)) | \wgn) zy) - mz(an)/._ \y(") }_ \wp) !

p input values

e (Gaussian noise 1s added to linear model to introduce deviations
f(x)=x'w y=f(x)+e y=Xw-+e e ~ N(0,02)

Rasmussen & Williams define X as the transpose of the definition here
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We start by writing the likelihood of the observed

data, for the given inputs and weights

Deviation from model

i ASSU.IIllIlg lndependent data: follows Gaussian pdf

n

N c 1 (yz _— XZTW)2
1] | xi,w) =]] T exp (— 52 )

=1 ') n

p(y | X,w)

(2707 2 exp(— 2(17% ly — XW|2) =N (Xw,o.I)

* We need to specify a prior probability for the weights

— Choose a zero-mean Gaussian with covariance matrix Zp
w ~ N (0, )
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The Bayesian linear model specifies the weights

via a posterior distribution, given the data

p(y | X, w) P )
p(w ‘ y’ X) — p(W) , ) posterior prior

likelihood
P(B|A)
P(B) marginal

~—

— The marginal probability is independent of w

— Obtainable as normalization constant: p(y | X) = / p(y | X, w)p(w)dw

* The result can be expressed as a multivariate Gaussian
p(w |y, X) ~N(w,A™)
— Mean: W= 5A"X'"y

— Covariance matrix: A}, A= o, X'X + 2 !
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The recommended weights can be extracted

in several wavys

* Use the mean (expected value), or the mode (most likely value)

— These are the same for the Normal distribution
+ Weobtain: w= (X' X +02%;") Xy
* Compare to result for ridge regression (Lecture 19)
w=X'X+A)"'X"y

* The prior on the weights imposes a regularization penalty!

24
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Everything is given as a probability

distribution

prior

slope,

o
c o

0
intercept, w. 1

posterior

Rasmussen & Williams



To make predictions in the Bayesian scheme, we

can average over the entire distribution of weights

* This again results in a Gaussian for the predicted values

P |0 X3) = / p(fi | %0, W)p(W | X, y)dw

dict d/' input _ -2, T A—1vT T 4—1
o vlglﬁe I\:]epcl:or N N(io-n x* A X ylla ?c* A X*)
mean variance
» For an infinite-variance prior (X, = 0) A=o XTX+ 2]
o *A = (X"X)"!

and the mean fu(X:) is X, (XTX)_lXTy — X*Tv_v
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Features (a.k.a. basis functions) are a way to

add versatility to the model formulation

* Expand the p-dimensional x vector into an N-dimensional

space of variables ¢p(Xx)

* E.g., instead of a straight-line fit to a single x variable, use a

polynomial fit

27
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o,

f(x) = ¢(x) o

vector of
length N



Analysis using features ¢ proceeds exactly as

for case working directly with input vector x

* Replace X with feature matrix
1 1
(610(x) ... oy (x)

(I)(X): : : n X N matrix

\¢"(x) ... ¢W(x)

» The predictive distribution 1s
fel % X,y ~ N(o,2¢p, A @y, ¢, A7 9,)
$.=¢(x.)  A=o 2 @ +3]

28



The result may be reformulated to introduce

a kernel in lieu of the features

* Inversion of N X N matrix A may be inconvenient

 The distribution can be rewritten as
fol %0 X,y ~ N(¢] 5,8 (K +021) 'y
1
b S0, — ¢/ 5,8 (K + 021) <I>2p¢*)
— Where the kernel matrix is defined K = <I>§]p<I>T

— This instead requires inversion of an n X n matrix

— Desirable if feature space is larger than amount of data N> n
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The result may be reformulated to introduce

a kernel in lieu of the features

Inversion of N x N matrix A may be inconvenient

The distribution can be rewritten as
fo | X4y X,y ~ N(qb*TEp(I)T (K + aiI)_ly
bl 5,0. |~ o] 2,8 (K + 021) 85,0,

Note that the features always enter in a specific way

Define covariance function, or kernel k(x,x') = ¢(x)X,0(x)

Express as a dot product: k(x,x') = 9(x) - ¥(x'), ¥(x) = 5/ 2¢(x)
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The kernel trick replaces inner products in x

with the kernel operation, k(x,x'

* This allows model to bypass feature vectors entirely in lieu of
the kernel

 The kernel then becomes the central focus of model
development

31



Suggested Reading/Viewing

* C. E.Rasmussen & C. K. I. Williams, Gaussian Processes for

32

Machine Learning, the MIT Press, 2006. Chapters 1 and 2.

— www.GaussianProcess.org/gpml

Quantum Chemistry in the Age of Machine Learning, edited by
P. O. Dral

— Chapter 9. Kernel Methods, Max Pinheiro Jr. and Pavlo O. Dral

— Chapter 10. Bayesian Inference, Wei Liang and Hongsheng Dai

— Posted on UBLearns


http://www.gaussianprocess.org/gpml

