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What color is the candy that I will select 
from this urn?
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• It won’t be white

• It is one of these colors
black, red, green, blue, yellow, brown, orange, purple, gray

• The candy is not licorice

• The candy is M&Ms

• The color distribution of M&Ms is
24% blue, 20% orange, 16% green, 14% yellow, 13% red, and 13% brown

• What principle are you using to make your prediction?



Probability (like temperature ) is a more 
subtle concept than you might realize
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• Two interpretations are in common use

• Frequentist
– Probability describes the number of times each outcome would occur 

if an infinite number of samples were taken on a population
– It can change only by changing the population

• Bayesian
– Probability quantifies how much information you have about an 

outcome
– It can change as more information becomes available



Conditional probability is a core concept in 
the Bayesian framework
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• Here is a space of 
outcomes of an 
event:
– Select a number 

uniformly at 
random from 1 to 
100



Conditional probability is a core concept in 
the Bayesian framework
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• Events A and B 
occur when 
numbers are 
selected in the 
indicated regions, 
respectively

• What are 
P(A)?
P(B)?



Conditional probability is a core concept in 
the Bayesian framework
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• Events A and B 
occur when 
numbers are 
selected in the 
indicated regions, 
respectively

• What are 
P(A) = 34/100 = 0.34
P(B) = 12/100 = 0.12



Conditional probability is a core concept in 
the Bayesian framework
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• What is the 
probability of B, if 
we know that A 
occurred?
Probability of B, 
given A
P(B|A) = ?



Conditional probability is a core concept in 
the Bayesian framework
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• What is the 
probability of B, if 
we know that A 
occurred?
Probability of B, 
given A
P(B|A) = 8/34 = 0.24



Conditional probability is a core concept in 
the Bayesian framework
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• What is the 
probability of B, if 
we know that A 
occurred?
Probability of B, 
given A
P(B|A) = 8/34 = 0.24
= P(A∩B)/P(A)
= (8/100)/(34/100)



Conditional probability is a core concept in 
the Bayesian framework
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• This is the general 
formula for the 
conditional 
probability



Conditional probability is a core concept in 
the Bayesian framework
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• It works both ways

• What is
P(A|B)?



Conditional probability is a core concept in 
the Bayesian framework

13

• It works both ways

• What is
P(A|B) = 8/12 = 0.67
P(A ∩ B)?
P(B)?
P(A ∩ B)/P(B)?



Conditional probability is a core concept in 
the Bayesian framework

14

• It works both ways

• What is
P(A|B) = 8/12 = 0.67
P(A ∩ B) = 8/100
P(B) = 12/100
P(A ∩ B)/P(B) = (8/100)/(12/100) = 8/12



Conditional probability is a core concept in 
the Bayesian framework
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• We have expressions for the two conditional probabilities

• Or

• Of course, (A ∩ B) and (B ∩ A) are the same event, so 

– This is Bayes’ rule



Bayes’ rule provides a framework to update 
probabilities when given new information
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• It’s use is best understood when written in this form

• The posterior is the updated probability in light of new 
information

priorposterior

likelihood

marginal



The various parts of Bayes’ formula can be 
explained in words
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• In our applications, event A is a model parameter(s) w or 
outcome y having a particular value, and event B is data

• P(w) − this is the prior probability, the probability of the parameter 
value (or outcome y) in the absence of data
– Could be a uniform distribution over an expected range

• P(w|data) − this is the posterior probability, informed by data
• P(data|w) − this is the likelihood that we’d observe the given data, 

given that the model parameter has the specified value
• P(data) − this is the marginal probability of the data, considering 

all possible parameter values



The marginal probability is usually obtained 
by integration, or normalization
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• Consider all mutually exclusive B events

• Or more generally for our case

The marginal probability does not 
depend on w 



Regression is a process of induction:
specific à general
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• Given a finite set of training data

• We want to infer a function or model f(x) that provides 
accurate outputs for all possible input values

• The data are insufficient to do this perfectly, i.e., to solve for f
• Hence, we impose conditions, or assumptions, regarding the 

form of f
– Otherwise, any function that goes through the points would be valid



Two approaches to restrict the model are in 
common use
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• Restrict the class of functions that are considered
– e.g., linear functions of the variables in x 
– Requires a decision on the richness of the class of functions considered

• Target may not be well described by the selected functions
• Adding more functions risks overfitting

• Assign a prior probability to all trial functions
– Higher probability assigned to more likely functions, e.g., those that 

are smooth versus those that are erratic
– This admits and infinite range of functions; how to account for all of 

them? (Gaussian processes does the trick)



Rather than going straight to functions, a weight-
space view can ease into the Bayesian approach
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• Standard linear model
Input     Design matrix  Output    Weights

• Gaussian noise is added to linear model to introduce deviations

n {x,y} 
samples

p input values

np p

(x(1))T

Rasmussen & Williams define X as the transpose of the definition here



We start by writing the likelihood of the observed 
data, for the given inputs and weights 
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• Assuming independent data:

• We need to specify a prior probability for the weights
– Choose a zero-mean Gaussian with covariance matrix Σp 

Deviation from model 
follows Gaussian pdf



The Bayesian linear model specifies the weights 
via a posterior distribution, given the data
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– The marginal probability is independent of w 
– Obtainable as normalization constant:

• The result can be expressed as a multivariate Gaussian

– Mean:
– Covariance matrix:  



The recommended weights can be extracted 
in several ways
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• Use the mean (expected value), or the mode (most likely value)
– These are the same for the Normal distribution

• We obtain:

• Compare to result for ridge regression (Lecture 19)

• The prior on the weights imposes a regularization penalty!



Everything is given as a probability 
distribution
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Rasmussen & Williams 

prior

posterior

y(x)



To make predictions in the Bayesian scheme, we 
can average over the entire distribution of weights

26

• This again results in a Gaussian for the predicted values

• For an infinite-variance prior (Σp−1 à 0)

and the mean f*(x*) is 

predicted 
value

input 
vector

mean variance



Features (a.k.a. basis functions) are a way to 
add versatility to the model formulation
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• Expand the p-dimensional x vector into an N-dimensional 
space of variables ϕ(x)

• E.g., instead of a straight-line fit to a single x variable, use a 
polynomial fit

vector of 
length N



Analysis using features ϕ proceeds exactly as 
for case working directly with input vector x
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• Replace X with feature matrix

• The predictive distribution is 

n × N matrix



The result may be reformulated to introduce 
a kernel in lieu of the features 
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• Inversion of N × N matrix A may be inconvenient

• The distribution can be rewritten as

– Where the kernel matrix is defined
– This instead requires inversion of an n × n matrix
– Desirable if feature space is larger than amount of data N > n



The result may be reformulated to introduce 
a kernel in lieu of the features 
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• Inversion of N × N matrix A may be inconvenient

• The distribution can be rewritten as

• Note that the features always enter in a specific way

• Define covariance function, or  kernel  

• Express as a dot product: 



The kernel trick replaces inner products in x 
with the kernel operation, k(x,x')
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• This allows model to bypass feature vectors entirely in lieu of 
the kernel

• The kernel then becomes the central focus of model 
development



Suggested Reading/Viewing
• C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for 

Machine Learning, the MIT Press, 2006. Chapters 1 and 2.
– www.GaussianProcess.org/gpml

• Quantum Chemistry in the Age of Machine Learning, edited by 
P. O. Dral
– Chapter 9. Kernel Methods, Max Pinheiro Jr. and Pavlo O. Dral
– Chapter 10. Bayesian Inference, Wei Liang and Hongsheng Dai
– Posted on UBLearns
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http://www.gaussianprocess.org/gpml

