Lecture 21 Neural networks

Simple neural networks; activation functions; training

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

Here is perhaps the simplest example of a neural network

- We have a set of training and test data
 We define a neural network to represent it
 1.0 5.082
 2.0 7.950
- Training
 Test

 x
 y
 x
 y

 1.0
 5.082
 1.2
 5.601

 2.0
 7.950
 6.
 19.98

 3.0
 10.96

 4.0
 14.05

bias

5.0

17.04

- Output from x_1 is transformed according to $\hat{y} = w_{11}^1 x_1 + b_1$
- The NN "learns" from the training data, meaning it determines values of w_{11}^1 , b_1^1 that best describe the data

Learning is done by evaluating a loss function and adjusting parameters using gradient

• Loss function

$$\hat{y} = w_{11}^1 x_1 + b_1$$

$$L(w_{11}^1,b_1^1) = \sum ig(y_i - \hat{y}(x_{1i};w_{11}^1,b_1^1)ig)^2$$

- A general parameter θ is updated according to $\theta(\text{new}) = \theta(\text{old}) - \gamma \frac{\partial L}{\partial \theta}$
 - $-\gamma$ is a hyperparameter that controls the learning process
 - Too-large γ risks moving parameters too far from current values
 - Too-small γ increases amount of iterations needed to learn
 - Gradients are

3

$$rac{\partial L}{\partial w_{11}^1} = -2\sum(y_i - \hat{y}(x_{1i}))x_{1i} \quad rac{\partial L}{\partial b_1^1} = -2\sum(y_i - \hat{y}(x_{1i}))$$

Iteration entails calculation of loss function, update of parameters, repeat

W ¹ ₁₁	<i>b</i> ₁ ¹	$\frac{\partial L}{\partial W_{11}^1}$	$\frac{\partial L}{\partial b_1^1}$	L
1	0	-281.	-80.2	361.391
3.80552	0.801755	52.1079	12.0077	13.6995
3.28444	0.681677	-8.81311	-4.8254	1.97225
3.37257	0.729932	2.32893	-1.69893	1.53215
3.34929	0.746921	0.276786	-2.22772	1.46799

ŷ(1)	ŷ(2)	ŷ(3)	ŷ(4)	У
4.60728	3.96612	4.10251	4.09621	5.082
8.4128	7.25056	7.47508	7.44549	7.950
12.2183	10.535	10.8477	10.7948	10.96
16.0238	13.8195	14.2202	14.1441	14.05
19.8294	17.1039	17.5928	17.4933	17.04

4

 $L(w_{11}^1,b_1^1) = \sum ig(y_i - \hat{y}(x_{1i};w_{11}^1,b_1^1)ig)^2$

$$heta(ext{new}) = heta(ext{old}) - \gamma rac{\partial L}{\partial heta}$$

$$egin{aligned} rac{\partial L}{\partial w_{11}^1} &= -2\sum(y_i - \hat{y}(x_{1i}))x_{1i}\ rac{\partial L}{\partial b_1^1} &= -2\sum(y_i - \hat{y}(x_{1i})) \end{aligned}$$

Learning rate can affect performance

Comparison to test set is used to evaluate NN model

We can make a more complicated NN by adding another input, and another node

layer; they happen to have been equal in our two examples so far

- Now we have 9 parameters
- The output (activation, *a*) of each node is given from all of its inputs

$$a_1^1 = w_{11}^1 x_1 + w_{12}^1 x_2 + b_1^1$$

All nodes in layer *l*, in matrix form:

$$a^l = W^l a^{l-1} + b^l$$

The combining of the inputs to produce the output can be described by matrix operations

More complexity can be introduced by adding more hidden layers

So far, neural networks appear to be exactly the same as a simple multilinear regression

- The output vector can be written succinctly as a set of nested linear operations $\hat{y} = W^3 a^2 + b^3$ $= W^3 (W^2 a^1 + b^2) + b^3$ $= W^3 (W^2 (W^1 a^0 + b^1) + b^2) + b^3$
 - $egin{aligned} &= W^3 W^2 W^1 x + (W^3 W^2 b^1 + W^3 b^2 + b^3) \ &= A x + c \end{aligned}$
 - This is just a linear combination of the input data x
 We examined this already, and showed it has an explicit solution

Neural networks are made nonlinear by introducing an *activation function* with each node

 a^{l-1}

• The node performs two operations

11

- Calculate linear combination of inputs
- Pass combined inputs though a nonlinear function to generate output, or activation

The activation function is what gives neural networks their versatility

- Several forms are in use
 - Same for for all nodes in a layer
 - May differ in different layers

TABLE 1 Overview of a selection of popular activation functions.

Names	Equation		
Linear function Identity function [2]	g(v) = v		
Rectified linear unit (ReLU) [2]	$g(v) = \max(0, v)$		
Exponential linear unit (ELU) [5]	$g(v) = \begin{cases} v & \text{if } v \ge 0\\ a(\exp(v) - 1) & \text{otherwise} \end{cases}$ where <i>a</i> is a parameter		
Continuously differentiable exponential linear unit (CELU) [6]	$g(v) = \begin{cases} v & \text{if } v \ge 0\\ a(\exp(v_a) - 1) & \text{otherwise} \end{cases}$ where <i>a</i> is a parameter		
Gaussian error linear unit (GELU) [7]	$g(v) = v \cdot \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{v}{\sqrt{2}}\right) \right]$ Faster approximated versions: $g(v) = 0.5v \left(1 + \tanh\left[\sqrt{2/\pi} \left(v + 0.044715v^3\right)\right] \right)$ $g(v) = v \cdot \sigma (1.702v) = v \cdot \frac{1}{1} + \exp(-1.702v) \right]$		
Radial basis function (RBF) [1,2]	$g(v) = \exp(-a(v-c)^2)$ where <i>a</i> and <i>c</i> are parameters		
Logistic sigmoid function [1,2]	$g(v)=\sigma(v)={}^{1}\!\!\!/_{\left[1+\exp(-v) ight]}$		
Softplus function [2]	$g(v) = \log(1 + \exp(v))$		

 $g(v) = T(v) = \tanh(v)$

Hyperbolic tangent function [2]

The activation function is what gives neural networks their versatility

Most commonly used activation functions:

• Sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$

• Tanh:
$$tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$$

• ReLU (Rectified Linear Unit): $\operatorname{ReLU}(z) = \max(0, z)$

Most popular recently for deep learning

Before going further, let's simplify notation by absorbing *b* into *W*

- Each node implicitly has a unit input, along with inputs from previous layer $\binom{a^l}{w^l} = \binom{w^l}{w^l} \cdot \binom{a_1^{l-1}}{w^l}$
 - Last column of W plays the role of b
 - This just makes notation simpler

$$egin{pmatrix} a_1^l\ a_2^l \end{pmatrix} = egin{pmatrix} w_{11}^l & w_{12}^l & w_{13}^l\ w_{21}^l & w_{22}^l & w_{23}^l \end{pmatrix} egin{pmatrix} a_1^{l-1}\ a_2^{l-1}\ 1 \end{pmatrix}$$

 $a^l = W^l a^{l-1}$ instead of $a^l = W^l a^{l-1} + b^l$

Neural network can be written as a system of nested functions

$$egin{array}{ll} \hat{y} &= W^3 a^2 \ &= W^3 f^2(z^2) \ &= W^3 f^2(W^2 a^1) \ &= W^3 f^2(W^2 f^1(z^1)) \ &= W^3 f^2(W^2 f^1(W^1 x)) \end{array}$$

15

Backpropagation is used to compute weight derivatives efficiently

- Regardless of network configuration, weights are computed using gradient descent, modulated by the learning rate γ $\theta(\text{new}) = \theta(\text{old}) - \gamma \frac{\partial L}{\partial \theta} \sim \log \theta(\text{new})$
- The necessary derivatives can be complicated to compute
- Working backwards, using the chain rule, makes it easy $\frac{dC}{da^{L}} \cdot \frac{da^{L}}{dz^{L}} \cdot \frac{dz^{L}}{da^{L-1}} \cdot \frac{da^{L-1}}{dz^{L-1}} \cdot \frac{dz^{L-1}}{da^{L-2}} \cdot \dots \cdot \frac{da^{1}}{dz^{1}} \cdot \frac{\partial z^{1}}{\partial x}$ number of layers

Samples, batches and epochs each describe an amount of training data

- Learning is performed on batches
- An *epoch* is reached when all batches in training set are used

Select next

batch. i

START

Guess

 θ values

i = 1

Training neural networks is a non-convex optimization problem

- This means we can run into many local minima during training
- Having many solutions is not necessarily bad
 - very different parameters can give NN models making similar predictions for points similar to training points
- Combine NNs in an ensemble
 - ensemble mean more stable than individual NNs
 - use deviation within ensemble for uncertainty quantification

Suggested Reading/Viewing

- Dral, Pavlo O; Kananenka, Alexei A; Ge, Fuchun; Xue, Bao-Xin, Chapter 8, Neural Networks. In *Quantum Chemistry in the Age of Machine Learning*.
 - <u>https://doi.org/10.1016/B978-0-323-90049-2.00011-1</u>
 - Posted on UBLearns
- <u>https://en.wikipedia.org/wiki/Backpropagation</u>