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Here is perhaps the simplest example of a 
neural network
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• We have a set of training and test data

• We define a neural network to represent it

• Output from x1 is transformed according to

• The NN “learns” from the training data, meaning it 
determines values of             that best describe the data  
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Learning is done by evaluating a loss function 
and adjusting parameters using gradient
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• Loss function

• A general parameter θ is updated according to

– γ is a hyperparameter that controls the learning process
• Too-large γ risks moving parameters too far from current values
• Too-small γ increases amount of iterations needed to learn

– Gradients are



Iteration entails calculation of loss function, 
update of parameters, repeat
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Learning rate can affect performance
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Comparison to test set is used to evaluate 
NN model
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We can make a more complicated NN by 
adding another input, and another node
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– Now we have 9 parameters
– The output (activation, a) of 

each node is given from all 
of its inputs

– All nodes in layer l, in 
matrix form:Number of nodes in hidden layer 

is independent of number in input 
layer; they happen to have been 
equal in our two examples so far
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The combining of the inputs to produce the 
output can be described by matrix operations
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ŷ
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More complexity can be introduced by 
adding more hidden layers
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Now we have 15 
parameters
In general, for L 
layers with Nl nodes 
in layer lNumber of nodes in hidden layer 

is independent of number in input 
layer; they happen to have been 
equal in our two examples so far
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So far, neural networks appear to be exactly 
the same as a simple multilinear regression 
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• The output vector can be written succinctly as a set of nested 
linear operations

• This is just a linear combination of the input data x
– We examined this already, and showed it has an explicit solution
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Neural networks are made nonlinear by 
introducing an activation function with each node
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• The node performs two operations
– Calculate linear combination of inputs
– Pass combined inputs though a nonlinear function 

to generate output, or activation

al-1



The activation function is what gives neural 
networks their versatility
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• Several forms are in use
– Same for for all nodes in a layer
– May differ in different layers
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The activation function is what gives neural 
networks their versatility
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Before going further, let’s simplify notation 
by absorbing b into W
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• Each node implicitly has a unit input, along with inputs from 
previous layer
– Last column of W plays the role of b
– This just makes notation simpler
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Neural network can be written as a system 
of nested functions
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For regression, the output 
layer usually does not 
include an activation function



Backpropagation is used to compute weight 
derivatives efficiently
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• Regardless of network configuration, weights are computed 
using gradient descent, modulated by the learning rate γ 

• The necessary derivatives can be complicated to compute
• Working backwards, using the chain rule, makes it easy 

loss function

number of layers



Samples, batches and epochs each describe 
an amount of training data
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• Learning is performed 
on batches

• An epoch is reached 
when all batches in 
training set are used
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Training neural networks is a non-convex 
optimization problem
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• This means we can run into many local minima during training

• Having many solutions is not necessarily bad
– very different parameters can 

give NN models making similar 
predictions for points similar 
to training points

•  Combine NNs in an ensemble 
– ensemble mean more stable than individual NNs 
– use deviation within ensemble for 

uncertainty quantification Shengyang Sun
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Suggested Reading/Viewing
• Dral, Pavlo O; Kananenka, Alexei A; Ge, Fuchun; Xue, Bao-

Xin, Chapter 8, Neural Networks. In Quantum Chemistry in 
the Age of Machine Learning. 
– https://doi.org/10.1016/B978-0-323-90049-2.00011-1
– Posted on UBLearns

• https://en.wikipedia.org/wiki/Backpropagation
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