
Prof. David A. Kofke
CE 500 – Modeling Potential-Energy Surfaces
Department of Chemical & Biological Engineering
University at Buffalo

Lecture 21
Neural networks

Simple neural networks; activation functions; training

© 2024 David Kofke

Here is perhaps the simplest example of a
neural network

2

• We have a set of training and test data

• We define a neural network to represent it

• Output from x1 is transformed according to

• The NN “learns” from the training data, meaning it
determines values of that best describe the data

x1

input layer hidden layer output layer

weight

bias

Training Test

ŷ

Learning is done by evaluating a loss function
and adjusting parameters using gradient

3

• Loss function

• A general parameter θ is updated according to

– γ is a hyperparameter that controls the learning process
• Too-large γ risks moving parameters too far from current values
• Too-small γ increases amount of iterations needed to learn

– Gradients are

Iteration entails calculation of loss function,
update of parameters, repeat

4

Learning rate can affect performance

5

Learning too slow Learning too fastLearning just right

note

Comparison to test set is used to evaluate
NN model

6

Test NN model

We can make a more complicated NN by
adding another input, and another node

7

– Now we have 9 parameters
– The output (activation, a) of

each node is given from all
of its inputs

– All nodes in layer l, in
matrix form:Number of nodes in hidden layer

is independent of number in input
layer; they happen to have been
equal in our two examples so far

x1

input layer hidden layer output layer

x2

ŷ

The combining of the inputs to produce the
output can be described by matrix operations

8

ŷ
x1

input layer hidden layer output layer

x2

2nd (output) layer

1st layer

Layer number

Number of node
receiving input

in layer l

Number of node
providing output
from layer l-1

Weight
indexes

More complexity can be introduced by
adding more hidden layers

9

Now we have 15
parameters
In general, for L
layers with Nl nodes
in layer lNumber of nodes in hidden layer

is independent of number in input
layer; they happen to have been
equal in our two examples so far

input layer hidden layers

x1

x2

output layer

ŷ

So far, neural networks appear to be exactly
the same as a simple multilinear regression

10

• The output vector can be written succinctly as a set of nested
linear operations

• This is just a linear combination of the input data x
– We examined this already, and showed it has an explicit solution

x1

x2

ŷ

Neural networks are made nonlinear by
introducing an activation function with each node

11

• The node performs two operations
– Calculate linear combination of inputs
– Pass combined inputs though a nonlinear function

to generate output, or activation

al-1

The activation function is what gives neural
networks their versatility

12

• Several forms are in use
– Same for for all nodes in a layer
– May differ in different layers

Dral, Kananenka, Ge, Xue
Neural Networks, Ch.8 in Quantum
Chemistry in the Age of Machine Learning
https://doi.org/10.1016/B978-0-323-90049-2.00011-1

https://doi.org/10.1016/B978-0-323-90049-2.00011-1
https://doi.org/10.1016/B978-0-323-90049-2.00011-1

The activation function is what gives neural
networks their versatility

13

Shengyang Sun
CSC 411, U Toronto

Before going further, let’s simplify notation
by absorbing b into W

14

• Each node implicitly has a unit input, along with inputs from
previous layer
– Last column of W plays the role of b
– This just makes notation simpler

x1

x2

1

1

1

instead of

Neural network can be written as a system
of nested functions

15

al-1

x1

x2

ŷ

For regression, the output
layer usually does not
include an activation function

Backpropagation is used to compute weight
derivatives efficiently

16

• Regardless of network configuration, weights are computed
using gradient descent, modulated by the learning rate γ

• The necessary derivatives can be complicated to compute
• Working backwards, using the chain rule, makes it easy

loss function

number of layers

Samples, batches and epochs each describe
an amount of training data

17

• Learning is performed
on batches

• An epoch is reached
when all batches in
training set are used

sample

batch

Training set

Compute all ŷ
and loss function

for batch i

Update all
parameters θ

using information
from batch i

Select next
batch, i

START
Guess

θ values

All
batches?i = 1 Done? exit

Y

N N

Y

epoch

Training neural networks is a non-convex
optimization problem

18

• This means we can run into many local minima during training

• Having many solutions is not necessarily bad
– very different parameters can

give NN models making similar
predictions for points similar
to training points

• Combine NNs in an ensemble
– ensemble mean more stable than individual NNs
– use deviation within ensemble for

uncertainty quantification Shengyang Sun
CSC 411, U Toronto

Suggested Reading/Viewing
• Dral, Pavlo O; Kananenka, Alexei A; Ge, Fuchun; Xue, Bao-

Xin, Chapter 8, Neural Networks. In Quantum Chemistry in
the Age of Machine Learning.
– https://doi.org/10.1016/B978-0-323-90049-2.00011-1
– Posted on UBLearns

• https://en.wikipedia.org/wiki/Backpropagation

19

https://doi.org/10.1016/B978-0-323-90049-2.00011-1
https://en.wikipedia.org/wiki/Backpropagation
https://doi.org/10.1016/B978-0-323-90049-2.00011-1
https://en.wikipedia.org/wiki/Backpropagation

