CE 530 Molecular Simulation

Lecture 2
Physical quantities; Hard-sphere MD

David A. Kofke

Department of Chemical Engineering

SUNY Buffalo

kofke@eng.buffalo.edu

1

Physical Quantities in Molecular Simulation

O State variables

- each variable has an associated "conjugate" variable temperature, energy (kT,E) pressure, volume (P,V) chemical potential, number of molecules (µ,N)
- specification of state requires fixing one of each pair
- the dependent variable can be measured by the simulation

O Configuration variables

- position, orientation, momentum of each atom or molecule
- energy, forces and torques
- time

O Properties

- transport coefficients, free energies, structural quantities, etc.
- O Molecular model parameters
 - characteristic energy, size, charge

Dimensions and Units 1. Magnitudes

- O Typical simulation size very small
 - 100 1000 atoms
- O Important extensive quantities small in magnitude
 - when expressed in macroscopic units
- O Small numbers are inconvenient
- O Two ways to magnify them
 - work with atomic-scale units ps, amu, nm or Å
 - make dimensionless with characteristic values

model values of size, energy, mass

Symbol	Definition	Value		
1. Constants				
k	Boltzmann's constant	1.3806×10 ⁻²⁸ J/(molec•K)		
N_{0}	Ava gadro's number	6.022×10^{23}		
2. Simulation Variables				
N	Number of molecules	$\sim 10^{3}$		
V	Simulation cell volume	$\sim 10^{-24} \mathrm{m}^3$		
m	Molecular mass	$\sim 10^{-25}\mathrm{kg/molec}$		
ρ	Number density	$\sim 10^{27} \mathrm{molec/m^3}$		
${\it E}$	Energy (total)	$\sim 10^{-20}$ J/molec		
t	time	$\sim 10^{-12} \mathrm{s}$		
3. Model Variables				
σ	Size variable	$\sim 5 \times 10^{-10} \text{ m}$		
E	Energy variable	$\sim 10^{-21}\mathrm{J/molec}$		
γ_{δ}	Bond distance	$\sim 10^{-10} \mathrm{m}$		
k_{ν}	Vibrational spring constant	$\sim 10^3 \text{ J/m}^2$		

Dimensions and Units 2. Scaling

- O Scaling by model parameters
 - Size σ
 - Energy ε
 - Mass m
- O Choose values for one atom/ molecule pair potential arbitrarily
- Other model parameters given in terms of reference values
 - e.g., $\varepsilon_2/\varepsilon_1 = 1.2$
- O Physical magnitudes less transparent
- O Sometimes convenient to scale coordinates differently

Symbol	Meaning	Definition
y*	dimensionless distance	r/σ
E^*	dimensionless energy	E/∈
T^*	dimensionless temperature	kT/€
U^*	dimensionless internal energy	U/∈
<i>t</i> *	dimensionless time	$t/[\sigma(m/\epsilon)^{0.5}]$
v*	dimensionless velocity	$\nabla /(\epsilon /m)^{0.5}$
₽*	dimensionless force	Fo∕ ∈
P^*	dimensionless pressure	$P\sigma^3/\epsilon$
D^*	dimensionless self diffusion coefficient	$D/[\sigma(\epsilon/m)^{0.5}]$

Dimensions and Units 3. Corresponding States

O Lennard-Jones potential in dimensionless form

$$u*(r*) = 4\left[\left(\frac{1}{r*}\right)^{12} - \left(\frac{1}{r*}\right)^{6}\right]$$

- O Parameter independent!
- O Dimensionless properties must also be parameter independent
 - convenient to report properties in this form, e.g. $P^*(\rho^*, T^*)$
 - select model values to get actual values of properties
 - Basis of corresponding states
- O Equivalent to selecting unit value for parameters

Dimensions and Units 4. Corresponding States Example

- O Want pressure for methane at 0.0183 mol/cm³ and 167 K
- O LJ model parameters are $\sigma = 0.3790$ nm, $\epsilon/k = 142.1$ K
- O Dimensionless state parameters
 - $\rho^* = \rho \sigma^3 = (0.0183 \text{ mol/cm}^3)(3.790 \times 10^{-8} \text{ cm})^3(6.022 \times 10^{23} \text{ molecules/mole}) = 0.6$
 - $T^* = T/(\epsilon/k) = (167 \text{ K})/(142.1 \text{ K}) = 1.174$
- O From LJ equation of state
 - $P^* = P\sigma^3/\epsilon = 0.146$
- O Corresponding to a pressure
 - $P = 0.146 (142.1 \text{ K})(13.8 \text{ MPa-Å}^3/\text{molecule})/(3.790\text{Å})^3 = 5.3 \text{ MPa}$
 - 53 bars

Dimensions and Units 5. Hard Potentials

- O Special case
 - u(r) = 0, r > d
 - $u(r) = \infty$, r < d

- O No characteristic energy!
- O Temperature (kT) provide the only characteristic energy
- O All dimensionless properties (e.g., Pd³/kT), independent of temperature!

Hard Sphere Molecular Dynamics

- O Prototype of a molecular simulation
 - basis for discussion
- O Introduce features common to all simulations
 - dimensions and units
 - atom looping
 - boundary conditions
 - averaging and error estimation
 - initialization
- O For later consideration:
 - integrators for soft potentials
 - Monte Carlo methods

9

Hard Sphere Dynamics

O Impulsive, pairwise collisions

- infinite force exerted over an infinitesimal time impulse = force \times time = finite change in momentum Δp
- force directed along line joining centers of atoms
- magnitude of impulse governed by conservation of energy

$$\vec{p}_1^{new} = \vec{p}_1^{old} + \Delta \vec{p}$$

$$\vec{p}_2^{new} = \vec{p}_2^{old} - \Delta \vec{p}$$
conservation of momentum
$$\frac{1}{m_1} \left| \vec{p}_1^{new} \right|^2 + \frac{1}{m_2} \left| \vec{p}_2^{new} \right|^2 = \frac{1}{m_1} \left| \vec{p}_1^{old} \right|^2 + \frac{1}{m_2} \left| \vec{p}_2^{old} \right|^2 \text{ conservation of energy}$$

• thus
$$\Delta p_{[xy]} = m_R \frac{\vec{v}_{12} \cdot \vec{r}_{12}}{\sigma^2} r_{12[xy]}$$

$$\vec{r}_{12} \equiv \vec{r}_2 - \vec{r}_1$$

$$\vec{v}_{12} \equiv \vec{v}_2 - \vec{v}_1$$
 consider glancing collision
$$m_R = \frac{2m_1 m_2}{m_1 + m_2}$$
 reduced mass consider head-on collision

Hard Sphere Kinematics

- O Free flight between collisions
 - $\vec{r}(t + \Delta t) = \vec{r}(t) + \vec{v}(t)\Delta t$
- O Collision time for any pair solved analytically
 - Find Δt such that $\left| \vec{r}_2(t + \Delta t) \vec{r}_1(t + \Delta t) \right|^2 = \sigma^2$
 - leads to quadratic equation

$$\vec{v}_{12}^2(\Delta t)^2 + 2(\vec{v}_{12} \cdot \vec{r}_{12})(\Delta t) + (\vec{r}_{12}^2 - \sigma^2) = 0$$

• three cases

separating

$$\vec{v}_{12}\cdot\vec{r}_{12}>0$$

approaching, but miss

$$\vec{v}_{12} \cdot \vec{r}_{12} < 0$$

$$(\vec{v}_{12} \cdot \vec{r}_{12})^2 - \vec{v}_{12}^2 (\vec{r}_{12}^2 - \sigma^2) < 0$$

approaching, and hit

$$\vec{v}_{12} \cdot \vec{r}_{12} < 0$$

$$(\vec{v}_{12} \cdot \vec{r}_{12})^2 - \vec{v}_{12}^2 (\vec{r}_{12}^2 - \sigma^2) > 0$$

Integration Strategy

- O Choose a time interval, Δt ; do the following to advance the system across this interval, bringing the system to time $t_{n+1} = t_n + \Delta t$
 - Loop over all pairs ij, computing collision time t_{ij}
 - *Identify minimum* t_{ii}^{min} *as next colliding pair*
 - If $t_{ij}^{\min} \le t_{n+1}$, advance all spheres to positions at t_{ij}^{\min}
 - Perform collision dynamics on colliding pair
 - *Identify next colliding pair, repeat until* $t_{ij}^{min} \le t_{n+1}$, then advance to t_{n+1} .
 - Accumulate averages, repeat for next time interval

O Click here for applet highlighting collision pairs

Ordering the Atoms

- O Atoms are placed in an arbitrary order
- O Each atom links to the next one up and next one down the list

- O Atom looks only up list to find collision partner
 - collisions with down-list atoms monitored by down-list atoms
- O Example
 - atoms 3 and 5 next to collide

Collision Update Requirements

- O No need to re-identify all collisions with each step
- O Upon collision, must update (check all atoms up-list of)
 - collider
 - partner
 - (downlist) atoms expecting to collide with collider or partner

O Also check if downlist atoms of collider or partner will now collide with either of them next