Lecture 2 Elementary Quantum Chemistry

Multidimensional particle in a box; hydrogen-like atoms

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

PiaB wavefunctions are orthogonal and normalized (orthonormal)

$$\int \psi_m^*(au) \psi_n(au) d au = \delta_{mn} \equiv egin{cases} 0 & m
eq n \ 1 & m = n \ ext{Micronecker} \ ext{delta function} \end{cases}$$

• Integral is analogous to dot product, in an infinitedimensional space

$$x^{\mathrm{T}}y = \sum_{i} x_{i}y_{i}$$

- Each τ value in integral is a different "index"

Mathematica evaluation of integral

 $\ln[3593] = psi[x_, n_, l_] := Sqrt\left[\frac{2}{l}\right] Sin\left[n \operatorname{Pi} \frac{x}{l}\right]$

In[3594]:= Integrate[psi[x, m, l] × psi[x, n, l], {x, 0, l}]
Simplify[%, Assumptions → {n ∈ Integers, m ∈ Integers}]
Integrate[psi[x, n, l] × psi[x, n, l], {x, 0, l}]
Simplify[%, Assumptions → {n ∈ Integers}]

```
Out[3594]=

\frac{2 n \cos[n \pi] \sin[m \pi] - 2 m \cos[m \pi] \sin[n \pi]}{m^2 \pi - n^2 \pi}

Out[3595]=

0

Out[3596]=

1 - \frac{\sin[2 n \pi]}{2 n \pi}

Out[3597]=

1
```

Two-dimensional PiaB is a simple extension of the 1D case

$$\hat{H}(au)\psi(au)=\psi(au)E \qquad au\equiv(x,y)$$

$$-rac{\hbar^2}{2m}igg(rac{\partial^2\psi(x,y)}{\partial x^2}+rac{\partial^2\psi(x,y)}{\partial y^2}igg)=\psi(x,y)E$$

$$V(x,y) = 0$$

$$V(x,y) = 0$$

$$V(x,y) = 0$$

- No coupling of x, y in Hamiltonian, so we can again apply separation of variables: $\psi(x,y) = \psi_x(x)\psi_y(y) \left[\frac{\hbar^2}{2m} \left(\frac{1}{\psi_x(x)} \frac{\partial^2 \psi_x(x)}{\partial x^2} + \frac{1}{\psi_y(y)} \frac{\partial^2 \psi_y(y)}{\partial y^2} \right) = E$
- Solution depends on two quantum numbers, n_x , n_y

$$E_{n_x,n_y} = rac{h^2}{8m} igg(rac{n_x^2}{l_x^2} + rac{n_y^2}{l_y^2} igg),$$

$$n_x, n_y = 1, 2, 3, \dots$$

Symmetry in the system produces degeneracies in the energy levels (different states of same energy)

, 5,	n_x	n_y	$E/(h^2/8m^2)$	$l_{x}^{2})$
$l_y = - l_x$	1	1	1.64	No
4	1	2	3.56	degeneracy
$E_{n_x,n_y} = rac{h^2}{8m} igg(rac{n_x^2}{l_x^2} + rac{n_y^2}{l_y^2} igg)$	2	1	4.64	
	2	2	6.56	
	1	3	6.76	
	3	1	9.64	
l_y	2	3	9.76	
	3	2	11.56	
	3	3	14.76	
12	4	1	16.64	
y .	4	2	18.56	
	3	4	19.24	
0	4	3	21.76	
$0 \qquad x \qquad l_{x}$	4	4	26.24	
··· • * * * *				

1 1 _ 1	n_x	n_y	$E/(h^2/8ml^2)$
$\iota_y = \iota_x \equiv \iota$	1	1	2.0
	2	1	5.0
$E_{n_x,n_y} = rac{h^2}{8ml^2}ig(n_x^2+n_y^2ig)$	1	2	5.0 degenerate
) 2	2	8.0
	/ 3	1	10.
	1	3	10.
1	3	2	13.
	2	3	13.
	3	3	18.
У	4	2	20.
	2	4	20.
	4	3	25.
	3	4	25.
$0 \qquad \lambda \qquad l$	4	4	32.

Several ways to view 2D wavefunction

3D PiaB wavefunction contours give an example of how electron orbitals will be presented

Study of PiaB teaches that confinement leads to energy-level quantization

- In chemistry, electrons are effectively confined by their strong electrostatic attraction to the nucleus
- Uncertainty principle, ΔxΔp ≥ ħ/2, (not discussed here) says that kinetic energy must exceed some minimum value, in response to cap on position uncertainty accompanying confinement
 - Kinetic energy cannot be zero, instead there is a "zero-point" energy
 - This prevents electron from collapsing into nucleus

A "hydrogen-like" atom is formed from one nucleus of charge +Ze, and one electron (-e)

- Potential energy given as Coulomb's law: $V(r) = -\frac{Ze^2}{4\pi\epsilon_0 r}$
 - Spherically symmetric, independent of direction
- Suggests use of spherical coordinates - Hamiltonian $\hat{H} = -\frac{\hbar^2}{2m_e} \nabla^2 + V(r)$ $\hat{H}\psi(r,\theta,\phi) \equiv -\frac{\hbar^2}{2m_e} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) \right]$
 - Solution introduces 3 quantum numbers: n, ℓ, m_{ℓ} $\psi_{n,\ell,m_{\ell}}(r,\theta,\phi) = R_{n,\ell}(r)Y_{\ell}^{m_{\ell}}(\theta,\phi)$

8

Wavefunction of hydrogen-like atom describes electron's radial and angular motion

$$\psi_{n,\ell,m_\ell}(r, heta,\phi) = R_{n,\ell}(r)Y_\ell^{m_\ell}(heta,\phi)$$

Radial component
 exponential decay

$$R_{n,\ell}(r)=r_{\star}^{\ell}P_{n,\ell}(r)e^{-(Z/na)r}$$

Associated Laguerre polynomial of degree $n-\ell-1$

9

-
$$n = 1, 2, 3, \dots$$
 (defined $n_r + \ell$) $\searrow m_e$

 $a=4\pi\epsilon_{0}\hbar^{2}/\mu e^{2}$

- principal quantum number
- $-\ell = 0, 1, 2, \dots, n-1$
 - orbital angular momentum quantum number
 - $\ell = 0, 1, 2, 3 \rightarrow s, p, d, f$

• Spherical harmonics $Y_{\ell}^{m_{\ell}}(\theta, \phi)$ $Y_{\ell}^{m_{\ell}}(\theta, \phi) \propto e^{im_{\ell}\phi}P_{\ell}^{m_{\ell}}(\cos \theta)$

Associated Legendre polynomial

$$-m_{\ell} = -\ell, -\ell+1, ..., 0, ..., \ell-1, \ell$$

- magnetic quantum number
- quantizes direction of angular motion
- degenerate states, 2ℓ+1
- combine to express complex part in terms of sin, cos

Wavefunction of hydrogen-like atom describes radial and angular motion

$$\psi_{n,\ell,m_\ell}(r, heta,\phi) = R_{n,\ell}(r)Y_\ell^{m_\ell}(heta,\phi)$$

• Radial component

• Spherical harmonics $Y_{\ell}^{m_{\ell}}(\theta,\phi)$

Wavefunction of hydrogen-like atom describes radial and angular motion

$$\psi_{n,\ell,m_\ell}(r, heta,\phi) = R_{n,\ell}(r)Y_\ell^{m_\ell}(heta,\phi)$$

Here is an implementation of the hydrogen wavefunctions in Mathematica

Hydrogen-like atom

Define functions

```
In[1261]:= a0 = Quantity["BohrRadius"] / Quantity["Angstroms"]
```

```
(* \ \psi \ is \ \langle esc \rangle y \langle esc \rangle \ *)
\psi R[n_{-}, l_{-}, r_{-}, Z_{-}] := With \left[ \left\{ b = \frac{2Z}{n \ a0} \right\}, \ Sqrt \left[ b^{3} \ \frac{(n - l - 1)!}{2n \ (n + l)!} \right] Exp \left[ -\frac{b \ r}{2} \right] \ (b \ r)^{l} \ LaguerreL[n - l - 1, 2 \ l + 1, b \ r] \right]
\psi [\{n_{-}, l_{-}, m_{-}\}, \{r_{-}, \theta_{-}, \phi_{-}\}, Z_{-}] := \psi R[n, l, r, Z] \ Spherical Harmonic Y[l, m, \theta, \phi]
Test normalization
```

Orbitals are typically visualized via a contour plot

The periodic table can be understood in terms of highest occupied (valence) orbitals

Energy levels depend only on principal quantum number

$$E_n = -rac{Z^2}{2n^2} rac{\hbar^2}{ma_0^2}, \qquad n = 1, 2, 3, \ldots$$

$$a_0 = 4\pi\epsilon_0 \hbar^2/m_{
m e} e^2$$

- *n* is defined to combine radial and angular motion
- Levels asymptote to $E_{\infty} = 0$, the unbound electron
 - Ground state (lowest energy) is n = 1
 - Negative value indicates binding
- n > 1 energies are degenerate, v = n² (2n² considering spin)
 n values for ℓ, and 2ℓ+1 values for m_ℓ

Use Mathematica to demonstrate that wavefunction satisfies Schrödinger equation

$$\frac{-\frac{k^{2}}{2m}\sqrt{2}\psi - \frac{ze^{2}}{4\pi\epsilon_{0}r}\psi = E\psi}{4\pi\epsilon_{0}r}$$

$$\frac{-\frac{1}{2}\sqrt{2}\psi - \frac{w}{k^{2}}\frac{ze^{2}}{4\pi\epsilon_{0}r}\psi = \frac{w}{k^{2}}E\psi}{-\frac{1}{2}\sqrt{2}\psi - \frac{z}{k^{2}}\psi = \frac{w}{k^{2}}E\psi}$$

$$E_{n} = -\frac{Z^{2}}{2n^{2}}\frac{\hbar^{2}}{ma_{0}^{2}}$$

$$SEtest[n_{, l_{, m_{, Z_{, l_{, m_{, Z_{, l_{, m_{, l_{i}}}}}}}}}}}}}}}}}} - {z_{aor} // FullSimplify}}}}}}}}}}}}}}}$$

0

Clear[a0]; SEtest[3, 2, 1, 1] // Simplify

16

This should equal
$$\frac{-Z^2}{2n^2a_0^2}$$

Hydrogen-like atomic wavefunctions are the foundation of computational quantum chemistry

- "Hydrogen-like" = One nucleus of charge +Z, one electron
 - One-electron spatial wavefunction is an *orbital*
 - When spin is added as a parameter, this is termed a *spin-orbital*
- Multi-electron atomic wavefunctions approximated by product of 1-electron wavefunctions
- Orbitals for multi-atomic systems (i.e., molecules) are also computed using atomic orbitals as a starting point

Suggested Reading/Viewing

- Autschbach Chs. 5,6
- Levine Ch. 6