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Review

O All useful free-energy methods compute free-energy
differences

O Several approaches have been developed
O FEP gives free-energy difference via an ensemble average

* Asymmetric

Deletion method 1s awful

O Four approaches to basic multistaging

* Umbrella sampling, Bennett's method, staged insertion/deletion

O Thermodynamic integration uses dA/dA = <dU/dA>
* Symmetric
O Parameter hopping treats perturbation variable as an
extension of phase space

* time spent at different values relates to their free-energy

difference




Free-Energy Perturbation

O Each stage of a FEP method should be used only for
“encompassing systems”

* important configurations of one system form a subset of the
configurations that are important to the other

* staging may be needed to bring this about
O The superset will have a higher entropy
* use “H” and “L” to distinguish high-
and low-entropy systems

O Remember hard-sphere with test particle

Every configuration of non-overlap is
important to the N+1 particle (L) system

)
: : 0
° But every one of these configurations is “‘“
of uniform importance in the N-particle |e g% -
Q
(H) system :. 00
°®




Distribution Functions

O The FEP average can be cast as a simple one-dimensional

integral

e A AN GNPV )P

On

:Idue_ﬁ”IdFN5(u—(UL ~Up))

e PM = Idu e P pp(u)

O Likewise

ePM = jdue+ﬂ”pL(u)

O Energy distributions

pr)={s—-AU)), -

normalized

On

reference is the high-entropy system

reference 1s the low-entropy system

Nomenclature

Free-energy difference: AA=A;-Ay
Entropy difference: AS =S;-Sy<0

pr(u) = <5 (u—AU )> L I plu)du =1 Energy difference: u = U (r™)-Uyx(r®)

—00




Interpretation

O Consider in the context of particle insertion (ghost — real)
O High-S system is ghost, Low-S is real
O u is the difference in energy U,y - Ugpog

O py 1s the distribution of energies (virtual energy changes)
experienced by molecule acting as a ghost (insertion energy)

* many overlaps, so energy will tend to be large
O p, is the distribution of energies experienced by a molecule

interacting with the others —
(deletion energy) -

* no overlap, favorable interactions, - ||PL

so energy will be small
O Typical behaviors / 7




Generalized Insertion and Deletion

O Widom insertion samples high-S
system, perturbs to low-S system

O Widom deletion does the
opposite

O Define

* Generalized insertion: FEP
calculation in which high-entropy
system governs sampling

* Generalized deletion: FEP
calculation in which low-entropy
system governs sampling




Distribution-Function Relations

O Previously we derived this result
<Me_/8(UL_UH)> .
< M> _ H Non-Boltzmann averaging formula
L <e_ BU;-Uy) > (used 0 and W to designate systems)
H




Distribution-Function Relations

O Previously we derived this result

<Me_/8(UL_UH)>

<M>L B <e—ﬂ(UL—UH)> .

H
O Take M = 5[u-(U; -Uy)]
<5e_/8(UL_UH)>

0) = (PO B

H




Distribution-Function Relations

O Previously we derived this result

<Me_/8(UL_UH)>

<M>L B <e—ﬂ(UL—UH)> :

H

O Take M = 5[u-(U; -Uy)]

<5e—ﬂ(UL—UH)>

0)L|= (PO B

Thisis — |
definition of p.

H

O Use definitions of py and p;

pr(u)=
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Distribution-Function Relations

O Previously we derived this result

<Me_/8(UL_UH)>

<M>L B <e—ﬂ(UL—UH)> :

H

O Take M = 8[u'(UL'UH)] This 1s u; the delta function lets us

<5e_ AU, U, >/ take it outside the average
0), = 4
L <e—,3(UL—UH)>

H

O Use definitions of py and p;

i (w)e

pr(u)=
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Distribution-Function Relations

O Previously we derived this result

<Me_/8(UL_UH)>

<M>L B <e—ﬂ(UL—UH)> .

H

O Take M = 5[u-(U; -Uy)]

<5e_/8(UL_UH) >
(5, = H - .
L <e_ BU-U H)> __— This 1s the free-energy difference
H

O Use definitions of py and p;

_IBu
py e
pL(u): He_IBAA
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Distribution-Function Relations

O Previously we derived this result

<Me_/8(UL_UH)>

M), = [PV B

H

O Take M = 5[u-(U; -Uy)]

<5e‘ﬂ(UL ~Upy) > pr@e P = py(uye
H

9, = Ty

O Use definitions of py and p;
rearrange

_IBu
py e
pL(u): He—ﬁAA




Using the py,p; Relation

O Relation: pg e ™ = py (u)e

O This can be used to obtain the free-energy difference
* Several equivalent formulations ln[]f—ﬂ
)] Plot In[p;/pu] vs u; slope -f3, \ PAA
In |:pz (u):| = pAd—pu intercept BAA -

Requires that distributions \

have region of overlap

P o "
nlpy ]+ pu=n[py )] -1 pu-pad ]
Plot Inp; +Bu/2 and Inpy - Bu/2 vs. u on same )
plot; constant difference between is BAA Vi
Can be applied to nonoverlapping distributions \ PAA
if interpolating form 1s known
0 u

O More sophisticated methods are available

* Examine them later, present interest is using distributions to
understand FEP performance
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Accuracy and Precision

O Consider performance of FEP calculations from two
perspectives

QO Precision

* reproducibility of the result Precise, but not
accurate

O Accuracy /

* correctness of the result

O Example

*  hard-sphere deletion

calculation
Accurate, but

good precision _
less precise

terrible accuracy
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Tail Contributions in FEP Calculations

O Examine contributions to FEP averages

Generalized insertion Generalized deletion

e PM = Idue_ﬂ”pH(u) e M = Idue+ﬂ”pL(u)

ﬂ

+u/kT

Large contribution Large contribution
from tail at small u from tail at large u
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Inaccuracy in FEP Calculations 1.

O Main source of inaccuracy is inadequate sampling of tails

A oo rrf.-"‘; ‘\H\\\ p(u)
I s
e’ = [ pweydu |,
g .
- g Y
\
Lll\A ¥

Largest contribution to

J pw)e(u)du| + Tp(u)e(u)du

Largest contribution to

insertion inaccuracy

deletion inaccuracy

O Model inaccuracy by assuming all error is due to missing tail

contribution

Ug
e_AAH _e_AAexact — I pH(u)e_ﬁudu —

—Q0

o0
e+AAL _e+AAexact — J.pL(u)e"'ﬂudu —

ur,

Ug
e M j pr (u)du

—00

g I py(u)du

ur

Inaccuracy in each method
1s given by area under
curve for other method




Inaccuracy in FEP Calculations 2.

O Missing tail contributions

Ug
e_AAH _e_AAexact — I pH(u)e_ﬂudu —

Inaccuracy in each method
1s given by area under
curve for other method

Ug
s I p; (u)du

0 —00
e8] o0
e ML _ ot AMevaer = J. p; w)ePdu 5P I pp (u)du
Uy " inaccuracy
7 PH
4 ///ﬁﬁ/ﬂ?ﬁ?ﬁm
. . Up us
O Relative inaccuracy
_AAsim H —AA ¢ :
e M — e Texac u Insertion
O = = du| A, 7 —AA >0 :
H o Mexact o PL sim,H exact overestimates
—AA.. I _ ; .
e Mt —g Tewc o0 Deletion
O = =— dul A, ;1 — <0 :
L o Mexact uy PH sim, L exact underestimates
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Asymmetry of the Inaccuracy 1.

O The opposite tendency of the insertion/deletion inaccuracy
leads to statements like these

“The forward and reverse [inaccuracy] should be of the same magnitude
and opposite sign”  J. Phys. Chem., 98, 1487-1493,1999

“The free energy change was taken as the average of the forward and
reverse free energies.”’ J Comp. Chem., 20, 499-510, 1999

O Remember the asymmetry of the hard-sphere
insertion/deletion methods
* for insertion, e is zero until a non-overlap is completed
* for deletion e*P is always unity

* averaging the insertion and deletion u'’s would be bad
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Asymmetry of the Inaccuracy 2.
O p, and p; have different variances

O Reference with Improvement of accuracies as length of simulation grows
broader distribution  /— ~
gives more
accurate result

O Large entropy
reference has larger
variance hence
g1ves more
accurate result

Py inaccuracy

pr. inaccuracy

-

O Insertion 1s more reliable than deletion




Predicting Inaccuracy

O Maximum likelihood analysis

* consider most likely outcome for

simulation with length M

O Need most likely values for uy, u;

O Consider probability that largest

deletion energy 1s some value,

after M attempted deletions

u*,

inaccuracy

% PH
///ﬁ e

Uy up,

prob(u; =u*) = prob(u* is sampled) x prob(u > u* is never sampled)

= pp,(u*)x {1 — [ pr(w)du

u*®

O Maximize with respect to u*

oln py(u)

ou

Oln p; (u)

ou

Ug

ur

M
} Similar formula derived for insertion

=Mpy(ug)—p

=—Mp;(u;)-p

J
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Testing Inaccuracy Model

O MC Simulation
* NVT
* (N-1)LJ+1HS «—>NLJ
« HS diameter = 0.8
- T=20; p=0.9

* simulation repeats
up to 200 runs

inaccury in e

o
o
|

\ S __®
8
0.6 — — | & insertion by simualtion
q O, insertion by model
—O— d: deletion by simulation
0.4 — € 5. deletion by model
¢
0.2 — \
I I I I I
2000 4000 6000 8000 10000

M, simulation Iength
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Knowing Your Inaccuracy

O How can the accuracy of a simulation result be assessed if
the simulation 1s itnaccurate?

O Compare to precision calculation where simulation data
(variance) are used to provide confidence limits

O Consider most-likely inaccuracy for HS insertion

Oy = (2M e™ )_1‘ Insertion only (AS < 0)

O Postulate 5, , ~ (Me?3)! for continuous distributions

* evaluate AA accuracy using simulation AS

O But simulation gives ‘incorrect’ AS
* generally, simulation AS < true AS (e236m) > g-AS(true))
* thus ‘incorrect’ AS indicates larger error
* safe estimate of inaccuracy

- gives (probabilistic) upper bound of AA inaccuracy
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Test of Postulated Form 1.

* MC simulations with
various conditions

* repeat simulations for up
to 100 independent runs

* very long simulation

generates pseudo true
AA

* calculate entropy
change, error-bar,
inaccuracy etc.

23

Series reference density | temperature AS/k
I [ (N-DLI+ 1 (LI with o= 0.9) 0.9 2.0 “1.702
2 | (N-DLT + 1 (LJ with o = 0.72) 0.9 2.0 ~4.250
3 | (N-1LJ+ 1 (LJ with o = 0.65) 0.8 1.0 “4.450
4 | (N-DLT + 1 (L with . = 0.7) 0.9 1.0 -5.799
5 (N-1) LI 0.8 1.0 -8.743
6 | (N-1)LJ + I (soft with o = 0.3) 0.9 1.0 -9.504
7 |[v-1)LI 0.9 1.0 12,179

N=108
100 —
x\;\
. R
N *
1 —
Oan \;/\___M
0.1 — O R
0
0.001 -
! 2 3 4 5 6789 2 3 4 5
3 4
10 10

M, simulation Iength




Test of Postulated Form 2.

* MC simulations with
various conditions

* repeat simulations for up
to 100 independent runs

* very long simulation

generates pseudo true
AA

* calculate entropy
change, error-bar,
inaccuracy etc.

Oy = (2MeAS )_1 ‘

Appropriate group,
perhaps incorrect
exponent
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Series reference density | temperature AS/k

I [ (N-DLI+ 1 (LI with o= 0.9) 0.9 2.0 “1.702

2 | (N-DLT + 1 (LJ with o = 0.72) 0.9 2.0 ~4.250

3 | (N-1LJ+ 1 (LJ with o = 0.65) 0.8 1.0 “4.450

4 | (N-DLT + 1 (L with . = 0.7) 0.9 1.0 -5.799

5 (N-1) LI 0.8 1.0 -8.743

6 | (N-1)LJ + I (soft with o = 0.3) 0.9 1.0 29.504

7 |- 0.9 1.0 12,179

N=108
100
10
1
ESAJ\

0.1
0.01
0.001

0.01 0.1 1

10

10 > Viexp(AS)

100

1000
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Precision of FEP Calculations 1.

O Consider L simulations, each doing M insertions

1.2345..M
1.2345..M

> L times
1,23,4,5,...M |

O Each M-length run gives a value for AA

O Variance of these averages for the L runs describes the
precision of the calculation




Precision of FEP Calculations 2.

Ep
H Instance

Discretize py

Consider probability of observing any
given distribution of FEP energy
values in a simulation of length M

Follows binomial distribution

m.
pi'
Qf{m}]1= M2
l 1_[m,-! ul u2 u3 ud4d uS ué6 u7 u8 u9
Variance in FEP average given in terms of variance of this
distribution
- +2 Bu;
O'XA & ewMZPi(l - p;)e P
Return to Note that exponents

continuum (M o’ ) P exp(—pA4) I PH (u)€+ﬂudu have signs opposite
formulation, o0 those for averages

rewrite T By
(Maz) :exp(+,BAA)IpL(u)e P

—00

ins
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Precision of FEP Calculations 3.

O Decompose into entropic and energetic contributions

* focus on insertion form

( Yol )ins _ STk T du p, (e P80
* expand

(Maz)ins = A5k OJ? dupL(u)[l —M%ﬂz(u —AU)2 + ]
* finally

(Mo_z). _ o ASk (1+éﬂ26_§U<§eAS/k
mns

Variance of energy in L
system (independent of M);
O(1) quantity

* entropy difference is key




Optimal Staging
O Apply precision model to optimize choice of intermediate in
staged 1nsertion
* how best to define Uy? e = (e Wv=Un))
O Opverall variance 1s the sum of variances of all stages

O Choose W:
* minimize (Mcz)tot =Zi§i exp(—AS; /k)
* subject to Y AS; =AS,,
* obtain |A(AS), =AS;-AS; =kIn(¢;/¢;)
* ¢ /¢ order of unity
O Heuristic:[A(AS) =0

* equal entropy difference

<e—ﬂ(UL —UW>>

H w

* compare to unjustified rule-of-thumb
equal free-energy difference
A(AA/k) = 0

* new rule greatly improves the precision




Example Application

System H System W System L
N-1 LJ particles N-1 Lennard-Jones particles N LIJ particles

1 Hard sphere of diameter o

O Optimize with respect to intermediate-HS diameter o




—A(AfA)

N=108
T=1.0 X
0=0.9 ,-\15-
Example 2o
F Overall variance
Results 5 9]
-
A 0T zeroline T
2
IS5 _AASK)
101
05 06 0.7
HS diameter a
2
N=200 ?15' ~AALA) -10° ¢
=10 & : 8
pZOS f 10 i 8
o ® 5
“ 2
= 5 —A(AS/K) o
21/ | |:r7lj —— - 10° §
o 1 U S W D/:(y .g
| 4
D/ I 8
0.70 0.75 0.80 0.85 0.90 095

HS diameter a

L S |
~ O

LI e |
A~ O

o

T
N

—_
o

3
aoueLIeA Pa|eds




Summary

O FEP energy distributions provide detailed information
regarding free-energy differences

O Relation between insertion and deletion distribution can be
used to measure free-energy differences

O Distributions can be used to understand precision and
accuracy of FEP calculations

O Insertion usually gives too-high value, deletion too low

* but not equally so,; deletion is much worse
O Formulated way to estimate inaccuracy using inaccurate data

O Both accuracy and precision strongly depend on entropy
difference between states

O Can use precision analysis to optimize staged insertions

31




