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Review
¡ All useful free-energy methods compute free-energy 

differences
¡ Several approaches have been developed
¡ FEP gives free-energy difference via an ensemble average

• Asymmetric
Deletion method is awful

¡ Four approaches to basic multistaging
• Umbrella sampling, Bennett’s method, staged insertion/deletion

¡ Thermodynamic integration uses dA/dl = <dU/dl>
• Symmetric

¡ Parameter hopping treats perturbation variable as an 
extension of phase space
• time spent at different values relates to their free-energy 

difference
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Free-Energy Perturbation
¡ Each stage of a FEP method should be used only for 

“encompassing systems”
• important configurations of one system form a subset of the 

configurations that are important to the other
• staging may be needed to bring this about

¡ The superset will have a higher entropy
• use “H” and “L” to distinguish high-

and low-entropy systems
¡ Remember hard-sphere with test particle

• Every configuration of non-overlap is
important to the N+1 particle (L) system

• But every one of these configurations is 
of uniform importance in the N-particle
(H) system 

G
H

L
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Distribution Functions

¡ The FEP average can be cast as a simple one-dimensional 
integral

¡ Likewise

¡ Energy distributions

reference is the high-entropy system
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Nomenclature
Free-energy difference:   DA ºAL-AH

Entropy difference:  DS º SL-SH < 0
Energy difference:  u º UL(r(N))-UH(r(N))
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Interpretation
¡ Consider in the context of particle insertion (ghost ® real)
¡ High-S system is ghost, Low-S is real
¡ u is the difference in energy Ureal - Ughost

¡ pH is the distribution of energies (virtual energy changes) 
experienced by molecule acting as a ghost (insertion energy)
• many overlaps, so energy will tend to be large

¡ pL is the distribution of energies experienced by a molecule 
interacting with the others
(deletion energy)
• no overlap, favorable interactions, 

so energy will be small
¡ Typical behaviors

u

pL

pH
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Generalized Insertion and Deletion
¡ Widom insertion samples high-S 

system, perturbs to low-S system
¡ Widom deletion does the 

opposite
¡ Define

• Generalized insertion:  FEP 
calculation in which high-entropy 
system governs sampling

• Generalized deletion: FEP 
calculation in which low-entropy 
system governs sampling
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Distribution-Function Relations

¡ Previously we derived this result
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Distribution-Function Relations

¡ Previously we derived this result

¡ Take M º d[u-(UL-UH)]
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Distribution-Function Relations

¡ Previously we derived this result

¡ Take M º d[u-(UL-UH)]

¡ Use definitions of pH and pL
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Distribution-Function Relations

¡ Previously we derived this result

¡ Take M º d[u-(UL-UH)]

¡ Use definitions of pH and pL
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Distribution-Function Relations

¡ Previously we derived this result

¡ Take M º d[u-(UL-UH)]

¡ Use definitions of pH and pL
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Distribution-Function Relations

¡ Previously we derived this result

¡ Take M º d[u-(UL-UH)]

¡ Use definitions of pH and pL
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13Using the pH,pL Relation
¡ Relation:
¡ This can be used to obtain the free-energy difference

• Several equivalent formulations

¡ More sophisticated methods are available
• Examine them later; present interest is using distributions to 

understand FEP performance
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Accuracy and Precision

¡ Consider performance of FEP calculations from two 
perspectives

¡ Precision
• reproducibility of the result

¡ Accuracy
• correctness of the result

¡ Example
• hard-sphere deletion 

calculation
good precision
terrible accuracy

Precise, but not 
accurate

Accurate, but 
less precise
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Tail Contributions in FEP Calculations
¡ Examine contributions to FEP averages

( )A u
He due p ub b- D -= ò

Generalized deletion

 pL

 e+u/kT

 ph

 e-u/kT

( )A u
Le due p ub b+ D += ò

Generalized insertion

Large contribution 
from tail at small u

Large contribution 
from tail at large u
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Inaccuracy in FEP Calculations 1.

¡ Main source of inaccuracy is inadequate sampling of tails

¡ Model inaccuracy by assuming all error is due to missing tail 
contribution

p(u)
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Inaccuracy in FEP Calculations 2.

¡ Missing tail contributions

¡ Relative inaccuracy
,
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Asymmetry of the Inaccuracy 1.
¡ The opposite tendency of the insertion/deletion inaccuracy 

leads to statements like these
• “The forward and reverse [inaccuracy] should be of the same magnitude 

and opposite sign”    J. Phys. Chem., 98, 1487-1493,1999

• “The free energy change was taken as the average of the forward and 
reverse free energies.”   J Comp. Chem., 20, 499-510, 1999

¡ Remember the asymmetry of the hard-sphere 
insertion/deletion methods
• for insertion, e-bµ is zero until a non-overlap is completed
• for deletion e+bµ is always unity
• averaging the insertion and deletion µ’s would be bad
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Asymmetry of the Inaccuracy 2.
¡ pH and pL have different variances

¡ Reference with 
broader distribution 
gives more
accurate result

¡ Large entropy 
reference has larger 
variance hence 
gives more 
accurate result

¡ Insertion is more reliable than deletion

pH inaccuracy

pL inaccuracy

Improvement of accuracies as length of simulation grows 



20Predicting Inaccuracy
¡ Maximum likelihood analysis

• consider most likely outcome for 
simulation with length M

¡ Need most likely values for uH, uL
¡ Consider probability that largest 

deletion energy is some value, u*,
after M attempted deletions

¡ Maximize with respect to u*
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 ds: insertion by simualtion     
 dm: insertion by model
 ds: deletion by simulation
 dm: deletion by model

Testing Inaccuracy Model
¡ MC Simulation

• NVT
• (N-1) LJ + 1 HS ¬® N LJ
• HS diameter = 0.8
• T = 2.0;  r = 0.9
• simulation repeats

up to 200 runs
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( ) 12 -D
D = S
A Med Insertion only (DS < 0) 

Knowing Your Inaccuracy
¡ How can the accuracy of a simulation result be assessed if 

the simulation is inaccurate?
¡ Compare to precision calculation where simulation data 

(variance) are used to provide confidence limits
¡ Consider most-likely inaccuracy for HS insertion

¡ Postulate dDA ~ (MeDS)-1 for continuous distributions
• evaluate DA accuracy using simulation DS

¡ But simulation gives ‘incorrect’ DS
• generally, simulation DS < true DS (e-DS(sim) > e-DS(true)) 
• thus ‘incorrect’ DS indicates larger error
• safe estimate of inaccuracy
• gives (probabilistic) upper bound of DA inaccuracy
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Test of Postulated Form 1.

• MC simulations with 
various conditions
• repeat simulations for up 

to 100 independent runs
• very long simulation 

generates pseudo true 
DA
• calculate entropy 

change, error-bar, 
inaccuracy etc.

Series reference density temperature DS/k
1 (N-1)LJ + 1 (LJ with a = 0.9) 0.9 2.0 -1.702
2 (N-1)LJ + 1 (LJ with a = 0.72) 0.9 2.0 -4.250
3 (N-1)LJ + 1 (LJ with a = 0.65) 0.8 1.0 -4.450
4 (N-1)LJ + 1 (LJ with a = 0.7) 0.9 1.0 -5.799
5 (N-1) LJ 0.8 1.0 -8.743
6 (N-1)LJ + 1 (soft with a = 0.3) 0.9 1.0 -9.504
7 (N-1) LJ 0.9 1.0 -12.179

    N = 108
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Test of Postulated Form 2.

• MC simulations with 
various conditions
• repeat simulations for up 

to 100 independent runs
• very long simulation 

generates pseudo true 
DA
• calculate entropy 

change, error-bar, 
inaccuracy etc.

Series reference density temperature DS/k
1 (N-1)LJ + 1 (LJ with a = 0.9) 0.9 2.0 -1.702
2 (N-1)LJ + 1 (LJ with a = 0.72) 0.9 2.0 -4.250
3 (N-1)LJ + 1 (LJ with a = 0.65) 0.8 1.0 -4.450
4 (N-1)LJ + 1 (LJ with a = 0.7) 0.9 1.0 -5.799
5 (N-1) LJ 0.8 1.0 -8.743
6 (N-1)LJ + 1 (soft with a = 0.3) 0.9 1.0 -9.504
7 (N-1) LJ 0.9 1.0 -12.179

    N = 108
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0.01 0.1 1 10 100 1000
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Appropriate group, 
perhaps incorrect 
exponent 
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Precision of FEP Calculations 1.

¡ Consider L simulations, each doing M insertions
1,2,3,4,5,...,M
1,2,3,4,5,...,M
. L times
.
.
1,2,3,4,5,...,M 

¡ Each M-length run gives a value for DA
¡ Variance of these averages for the L runs describes the 

precision of the calculation
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¡ Discretize pH
¡ Consider probability of observing any 

given distribution of FEP energy 
values in a simulation of length M

¡ Follows binomial distribution

¡ Variance in FEP average given in terms of variance of this 
distribution

¡ Return to 
continuum 
formulation, 
rewrite
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Precision of FEP Calculations 3.
¡ Decompose into entropic and energetic contributions

• focus on insertion form

• expand

• finally

• entropy difference is key
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Variance of energy in L 
system (independent of M);
O(1) quantity 
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G
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Optimal Staging
¡ Apply precision model to optimize choice of intermediate in 

staged insertion
• how best to define UW?

¡ Overall variance is the sum of variances of all stages
¡ Choose W:

• minimize
• subject to 
• obtain
• z j/zi: order of unity

¡ Heuristic: D(DS) = 0
• equal entropy difference
• compare to unjustified rule-of-thumb

equal free-energy difference
D(DA/k) = 0 

• new rule greatly improves the precision

( ) ( )2 expi iitot
M S ks z= -Då

i totS SD = Då
( ) ( )ln /j i j iijS S S k z zD D º D - D =
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H w
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29

Example Application

System H
N-1 LJ particles 

System W
N-1 Lennard-Jones particles
1 Hard sphere of diameter a

System L
N LJ particles 

¡ Optimize with respect to intermediate-HS diameter a



30

Example 
Results
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Summary
¡ FEP energy distributions provide detailed information 

regarding free-energy differences
¡ Relation between insertion and deletion distribution can be 

used to measure free-energy differences
¡ Distributions can be used to understand precision and 

accuracy of FEP calculations
¡ Insertion usually gives too-high value, deletion too low

• but not equally so; deletion is much worse
¡ Formulated way to estimate inaccuracy using inaccurate data
¡ Both accuracy and precision strongly depend on entropy 

difference between states
¡ Can use precision analysis to optimize staged insertions


