Lecture 19

Elements of Machine Learning

Basic terminology, concepts, and methods; linear models

Prof. David A. Kofke
CE 500 — Modeling Potential-Energy Surfaces

Department of Chemical & Biological Engineering
University at Buffalo

University at Buffalo
The State University of New York
© 2024 David Kotke



TO COMPLETE YOUR REGISTRATION, PLEASE. TELL US
WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

.

ANSWER QUICKLY—0UR SELF-DRIVING
CAR 1S ALMOST AT THE INTERSECTION.

S0 MUCH OF "Al" 15 JUsT FIGURING OUT WAYS
TO OFFLOAD WORK ONTO RANDOM STRANGERS. faiass




Machine learning (ML) is the study of algorithms

that auto-improve via experience and data

* New skills and/or better performance 1s acquired through
observation and trial & error

* Most algorithms are based 1n statistical concepts

 (Core elements have been around for decades
— Statistical inference methods

— Artificial intelligence

e What new? Data!

— The internet and social media produces huge amounts of data

3 — Motivates development of algorithms to harness for useful purposes



ML approaches are classified into supervised,

unsupervised, and reinforcement learning

METHOD: Unsupervised Supervised

e Supervised
— {input, output} data pairs are provided, and
goal 1s to provide correct output values
for new input data

By Numiri - Own work, CC BY-SA 4.0,

L]
e Unsupervised
n 1 u
ommons.wikimedia.org/w/index.php?curid=98615517

— No output labels are provided with data;
rather algorithm seeks to find patterns in it ﬂmt

<

» Reinforcement RSN
— Agent explores actions guided by rewards %fg

— E.g., games, robot control, autonomous driving Agent

Action

By Megajuice - Own work, CCO,
commons.wikimedia.org/w/index.php
?curid=57895741



Supervised learning separates into classification

and regression, depending on the type of output

 (lassification aims to 1dentify the discrete category for new
input data

— E.g., whether a new molecule is toxic vs. non-toxic

« Regression aims to estimate the value of a continuous
variable given new input data
— E.g., pK,, atomization energy, redox potential for a new molecule

— Potential energy for a configuration of molecules C—



The operation of a supervised ML algorithm

governed by a set of numeric parameters

Input variables,
or features
x1, xz,o XY xm

Selection of features
(descriptors) is often
an art that can be
crucial to ML success
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\ j> Output variable,
or label, y

Output is usually
a scalar, but can
be multivariate

There may be many, many parameters



Training is the process of establishing parameter

values, by minimizing a cost function

* The training set 1s a collection of (x, y) pairs

* A cost function (aka loss, error) characterizes the error in the
ML estimate of the output values relative to the given ones

— L1 norm: Z\g(x@); 0) — oy
i—1

= ||y —¥ylh

n . A\ 2
— L2norm: Y (9(756) —y¥)" = |ly - v
1=1

* The training process attempts to minimize the cost function
through manipulation of the parameters 6



Some data processing may be performed

before starting the training and application

* (Cleaning

— e.g., filling in missing values

« Standardization or other transformation
— e.g., scaling to zero mean and unit standard deviation

— Often this makes fitting more generic and easier, without irreversibly
changing the data



Available data should be split into training,

validation, and test sets

Training set

* Training set to determine the ML model parameters

* Validation set to adjust hyperparameters and avoid overfitting
— Hyperparameters define structure of ML model or guide training

— Validation may be added to training once hyperparameters are set

o Test set to assess the ML model

— It should play no part in training or validation

Data should be distributed at random among the sets
9 — 65:15:20 distribution of training:validation:test is typical



Both over- and underfitting are bad

Underfitting

Meaningful relationships in
datasets are not learned

training error: high
validation error: high
10

Appropriate fitting

training error: low
validation error: low

Overfitting

Noise in training data is learned,
and does not generalize

training error: low
validation error: high




Look at the values of the parameters for each of these fits Z a;x’

ay=-5.7 a,=1.4 a,=-12,010
a;=11.3 a;=3.0 a; = 110,100
a, — 1.5 a, = _432,100
a; =947,700
a,=—1,272,000
etc. (up to ag)

—> Overfitting often achieved using very large parameter values




Regularization calibrates ML models to

prevent underfitting or overfitting

* One approach: add a cost-function penalty for large parameters

— L1 regularization or /asso regression:
cost = error + A E 165
1

» Favors sparsity of coefficients, making some exactly 0
A tool for feature selection

A is an example of
a hyperparameter

— L2 regularization, or/idge regression:

For L1 regularization,

j : 2 int ti ith
COSt — error _|_ A . H’L Irrr:iiirr?ricmlo:omour is likely
(/

to happen at a vertex of
penalty function

Overall compression toward smaller coefficients
Also known as Tikhonov regularization




Early stopping is another regularization

method

e Perform parameter —
. . . L. ‘ — training
optimization on training set || 4= under-fitting - validation

* Occasionally evaluate error
using validation set

____________________________

over-fitting

loss

* Where validation error begins
to increase, halt optimization

—

training progress

Dral et al., doi.org/10.1016/B978-0-323-90049-2.00011-1
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https://doi.org/10.1016/B978-0-323-90049-2.00011-1

We will examine three general approaches

to formulating a machine-learning potential

Linear
models Neural
networks

Kernel-

based
methods




A model is linear if it has linear dependence on its

parameters (not that it fits using linear functions

* Energy given as a sum of * General linear model has a
one-body energies simple form: y = XWw
. Natoms — (1) 1) (1) -
E=) "B oy [(« \ ()
At - - (2) (2) <2> n
— om energies are, 1n turn, Y T ‘2 wp w2

given via a set of descriptors .

that depend on positions of '
P \y™ )

neighboring atoms -

\w(m n) xf;") ) \@,/

n {x,y}
Xs, etc. observation

pairs

p features and
parameters
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Ordinary least squares (OLS) is the basic,

assumption-free optimization of a linear model

n

, . 2
% = argmin »_ (39 = 3" 2lw;) " = argmin|ly — Xwl]

weRP ;1 J weRP

 Given a set of x; vectors, how can we combine them to get as
close to the y vector as possible? Think geometrically.

y — ¥ is orthogonal

221 mg P {y(”\l
@
ol 5 ' ky; to all x;:
: — Space of all y vectors \« xT ) — 0
(n) (.n) (n) target vector y ——»X (y —Y ) —
x x x
L y ' X'Xw=X"y
P ! s Do s tramcs on ~ _ (wT~x\-1xT
Xl X2 . Xp & (3 <2 = = & W T (X' X') X' y
closest vector Direct solution for optimum
XJ VeCtorS in span(X): ? = Xw is obtained (if enough data)
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Regularization is needed if the parameters

exceed the number of data (X™X not invertible

 Where w doesn’t have a unique solution, its evaluation 1s
arbitrary to a degree, and prediction performance will suffer

— Situation is likely where p > n (o &0 ... &Y
2D 2@ . L@
— Regularization can alleviate this x=|"' 7
* Ridge regression VIR
Sxr — 3 1 2 2 W = X.TX. —1xT
W = argmln(§||y—XWH2 —I—)\||w||2) (XTX)" X%y
weR?P

« Still a quadratic form; analytic minimum
w = (XX + ) X'y

n — Inverse will exist for nonzero A



Lasso regression does not allow a direct

solution for the minimum cost
~ . 2
W = argmm(%“y — Xw||; + )\HWH&

weR?
e Not a quadratic form, so more complicated to minimize

 Consider a single-feature example @ = argmin f(w)

weR
Example - l 2 2 2) . T
f(w) = 5 (wlx[5 + [[yl2) —wx"y + Ajw
f(w) N
0 — 0. ) )

®®O S — (iz P'e‘(’jewt'}Se 200 A=10  In general, @ = 0 S e—
O O quadratic i \X;Fy\ <A 1l
O 2” = 0.2 q1150f @2 X, y —2
o - : 100/ - (82) (3) )
O 2® =07 ' ; 4
8@@ y® = -3 \i_:i .. e 0.7/ \=3 |
-10 -5 5 10 -6

19 xly = —4.5



General lasso case is also piecewise

quadratic, but with more (2r) pieces

flw) = 3w X 'Xw — w' X"y + 3[lyll2 + A wllx

» Solution |x}(y — X®)| < A wy, =0

indicates x; (y — X&) > A x; (y — X&) = ) sgn(wy)
]
— Not a closed-form solution, but it gives some geometric insight

if X7 (y—§) <A

then feature #1 1s almost
orthogonal to difference and
doesn’t add enough to be
worthwhile to keep, so its weight
1s zeroed out

ol
el

_ Space of all y vectors Lw:

sparz XD — 27T B VCCLOrS
LIzl carr Bo roacradd 3
crrz7 77 I L X

0 i, projection of target y \Without X,



Coordinate descent is a popular algorithm

for finding lasso optimum
* Pick initial guess w

* In iteration i, proceed through  y,
all w, in random order

 For each £, find minimum of vary w;
Alw) by varying only w, / @

* Repeat for next i to
convergence

21



Least angle regression selection (LARS) is a

lasso solution that leads to sparse w (many zero
 Start with all w, =0

 Select k for which x, 'y is largest

 Increase wy until another descriptor j
has larger correlation with residual:

X;' (Y-WicXy)

e . . . S —— >

* Optimize wy and w; in direction X X1

equiangular between x; and x; until a Tallc et
3" ijs more correlated with new residual

29



Suggested Reading/Viewing

* Eugen Hruska and Fang Liu, Chapter 6, Machine learning: An
overview. In Quantum Chemistry in the Age of Machine
Learning.

— Posted on UBLearns

e Gauthier Tallec, Gaétan Laurens, Owen Fresse-Colson, and
Julien Lam, Chapter 11, Potentials based on linear models. In
Quantum Chemistry in the Age of Machine Learning.

— Posted on UBLearns
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