Lecture 19 Elements of Machine Learning

Basic terminology, concepts, and methods; linear models

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

Machine that auto

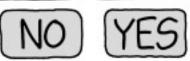
- New skill observation
- Most algo
- Core elen
 - Statistic
 - Artifici
- What nev

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

algorithms

data

d through



ANSWER QUICKLY-OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

- The intersection of the section of

Machine learning (ML) is the study of algorithms that auto-improve via experience and data

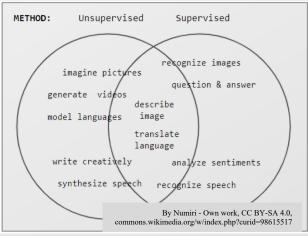
- New skills and/or better performance is acquired through observation and trial & error
- Most algorithms are based in statistical concepts
- Core elements have been around for decades
 - Statistical inference methods
 - Artificial intelligence
- What new? Data!

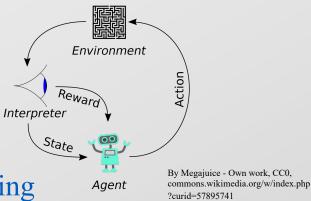
3

- The internet and social media produces huge amounts of data
- Motivates development of algorithms to harness for useful purposes

ML approaches are classified into supervised, unsupervised, and reinforcement learning

- Supervised
 - {input, output} data pairs are provided, and goal is to provide correct output values for new input data
- Unsupervised
 - No output labels are provided with data; rather algorithm seeks to find patterns in it
- Reinforcement
 - Agent explores actions guided by rewards
 - E.g., games, robot control, autonomous driving





Supervised learning separates into *classification* and *regression*, depending on the type of output

- Classification aims to identify the discrete category for new input data
 - E.g., whether a new molecule is toxic vs. non-toxic
- Regression aims to estimate the value of a continuous variable given new input data
 - E.g., pK_a, atomization energy, redox potential for a new molecule
 - Potential energy for a configuration of molecules

The operation of a supervised ML algorithm is governed by a set of numeric parameters

Input variables, or *features* \square x_1, x_2, \dots, x_m

Selection of features (descriptors) is often an art that can be crucial to ML success

AI **Parameters** θ_1, θ_2 \dots, θ_{P}

There may be many, many parameters

Output variable, or *label*, y

> Output is usually a scalar, but can be multivariate

6

Training is the process of establishing parameter values, by minimizing a *cost function*

- The training set is a collection of (x, y) pairs
- A cost function (aka *loss*, *error*) characterizes the error in the ML estimate of the output values relative to the given ones
 - L1 norm: $\sum_{i=1}^{n} |\hat{y}(\mathbf{x}^{(i)}; \boldsymbol{\theta}) y^{(i)}| = ||\hat{\mathbf{y}} \mathbf{y}||_{1}$ L2 norm: $\sum_{i=1}^{n} (\hat{y}(\mathbf{x}^{(i)}; \boldsymbol{\theta}) - y^{(i)})^{2} = ||\hat{\mathbf{y}} - \mathbf{y}||^{2}$
 - L2 norm: $\sum_{i=1}^{n} \left(\hat{y}(\mathbf{x}^{(i)}; \boldsymbol{\theta}) y^{(i)} \right)^2 \equiv ||\hat{\mathbf{y}} \mathbf{y}||_2^2$
- The training process attempts to minimize the cost function through manipulation of the parameters θ

Some data processing may be performed before starting the training and application

- Cleaning
 - *e.g.*, filling in missing values
- Standardization or other transformation
 - e.g., scaling to zero mean and unit standard deviation
 - Often this makes fitting more generic and easier, without irreversibly changing the data

Available data should be split into training, validation, and test sets



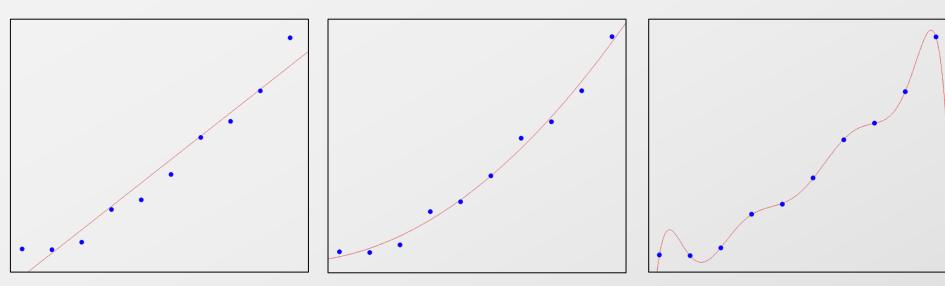
- *Training set* to determine the ML model parameters
- Validation set to adjust hyperparameters and avoid overfitting
 - Hyperparameters define structure of ML model or guide training
 - Validation may be added to training once hyperparameters are set
- *Test set* to assess the ML model

9

- It should play no part in training or validation

- Data should be distributed at random among the sets
 - 65:15:20 distribution of training:validation:test is typical

Both over- and underfitting are bad



Underfitting Meaningful relationships in datasets are not learned

training error: high validation error: high

Appropriate fitting

training error: low validation error: low

Overfitting Noise in training data is learned, and does not generalize

training error: low validation error: high

Both over- and underfitting are bad

 $a_0 = 1.4$

 $a_1 = 3.0$

 $a_2 = 1.5$

Look at the values of the parameters for each of these fits $\sum a_i x^i$

 $a_0 = -5.7$ $a_1 = 11.3$

 \rightarrow Overfitting often achieved using very large parameter values

Underfitting Meaningful relationships in datasets are not learned

training error: high validation error: high

Appropriate fitting

training error: low validation error: low

Overfitting Noise in training data is learned, and does not generalize

 $a_0 = -12,010$

 $a_1 = 110,100$

 $a_3 = 947,700$

 $a_2 = -432,100$

 $a_4 = -1,272,000$

etc. (up to a_8)

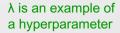
training error: low validation error: high

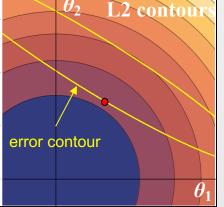
Regularization calibrates ML models to prevent underfitting or overfitting

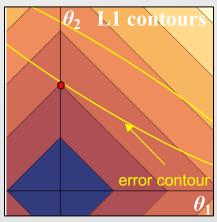
- One approach: add a cost-function penalty for large parameters
 - L1 regularization or *lasso* regression: $\mathbf{cost} = \mathbf{error} + \lambda \sum_{i} |\theta_i|$

Favors sparsity of coefficients, making some exactly 0

A tool for feature selection





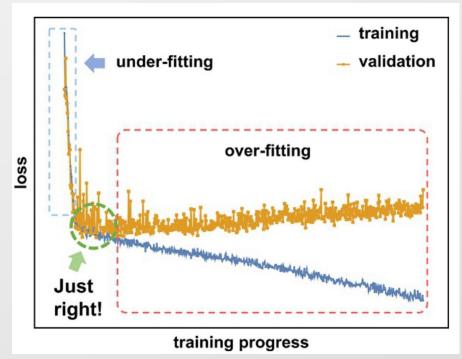


For L1 regularization, intersection with minimum contour is likely to happen at a vertex of penalty function

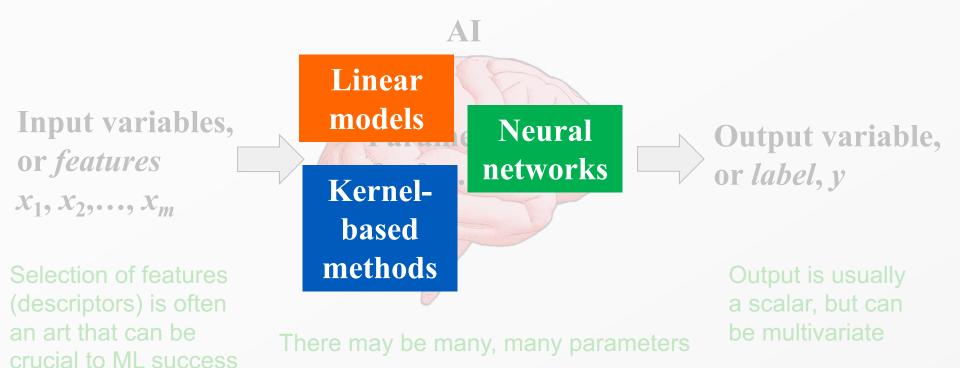
Overall compression toward smaller coefficients Also known as *Tikhonov regularization*

Early stopping is another regularization method

- Perform parameter optimization on training set
- Occasionally evaluate error using validation set
- Where validation error begins to increase, halt optimization



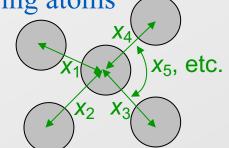
We will examine three general approaches to formulating a machine-learning potential



crucial to ML s

A model is *linear* if it has linear dependence on its parameters (not that it fits using linear functions)

- Energy given as a sum of one-body energies $E = \sum_{i}^{N_{\text{atoms}}} E_i$
 - Atom energies are, in turn, given via a set of descriptors that depend on positions of neighboring atoms

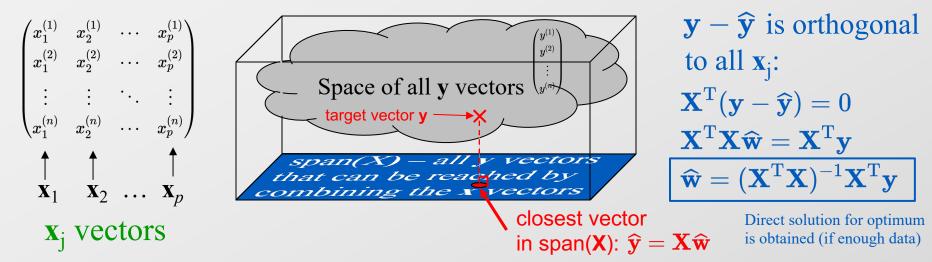


• General linear model has a simple form: $\mathbf{y} = \mathbf{X} \widehat{\mathbf{w}}$ w_1 $y^{(2)}$ $n\{\mathbf{x}, \mathbf{y}\}$ p features and observation parameters pairs

Ordinary least squares (OLS) is the basic, assumption-free optimization of a linear model

$$\widehat{\mathbf{w}} = rgmin_{\mathbf{w}\in\mathcal{R}^p} \sum_{i=1}^n \left(y^{(i)} - \sum_j^p x_j^{(i)} w_j
ight)^2 = rgmin_{\mathbf{w}\in\mathcal{R}^p} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2$$

• Given a set of x_j vectors, how can we combine them to get as close to the y vector as possible? Think geometrically.



17

Regularization is needed if the parameters exceed the number of data (X^TX not invertible)

- Where w doesn't have a unique solution, its evaluation is arbitrary to a degree, and prediction performance will suffer
 - Situation is likely where p > n
 - Regularization can alleviate this
- Ridge regression

18

$$\widehat{\mathbf{w}} = rgmin_{\mathbf{w} \in \mathcal{R}^p} igg(rac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_2^2 igg)$$

• Still a quadratic form; analytic minimum $\widehat{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$

– Inverse will exist for nonzero λ

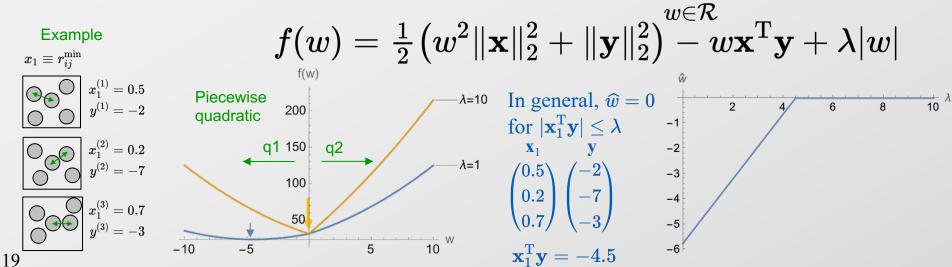
 $\mathbf{X} = egin{pmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_p^{(1)} \ x_1^{(2)} & x_2^{(2)} & \cdots & x_p^{(2)} \ dots & dots & \ddots & dots \ x_1^{(n)} & x_2^{(n)} & \cdots & x_p^{(n)} \end{pmatrix}$

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Lasso regression does not allow a direct solution for the minimum cost

$$egin{aligned} \widehat{\mathbf{w}} = rgmin_{\mathbf{w}\in\mathcal{R}^p} \Big(rac{1}{2}||\mathbf{y}-\mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_2 \Big) \end{aligned}$$

- Not a quadratic form, so more complicated to minimize
- Consider a single-feature example $\widehat{w} = \operatorname{argmin} f(w)$

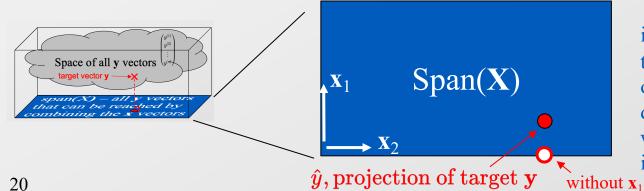


General lasso case is also piecewise quadratic, but with more (2^{*p*}) pieces

$$f(w) = rac{1}{2} \mathbf{w}^{ ext{T}} \mathbf{X}^{ ext{T}} \mathbf{X} \mathbf{w} - \mathbf{w}^{ ext{T}} \mathbf{X}^{ ext{T}} \mathbf{y} + rac{1}{2} \|\mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_1$$

 $\begin{array}{ll} \bullet \quad \text{Solution} \quad \left| \mathbf{x}_k^{\mathrm{T}} (\mathbf{y} - \mathbf{X} \widehat{\mathbf{w}}) \right| \leq \lambda \qquad w_k = 0 \\ \text{indicates} \quad \left| \mathbf{x}_k^{\mathrm{T}} (\mathbf{y} - \underline{\mathbf{X}} \widehat{\mathbf{w}}) \right| > \lambda \qquad \mathbf{x}_k^{\mathrm{T}} (\mathbf{y} - \mathbf{X} \widehat{\mathbf{w}}) = \lambda \operatorname{sgn}(w_k) \end{array}$

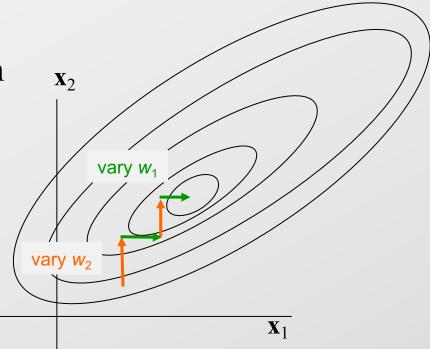
- Not a closed-form solution, but it gives some geometric insight



if $\mathbf{x}_1^{\mathrm{T}}(\mathbf{y} - \widehat{\mathbf{y}}) \leq \lambda$ then feature #1 is almost orthogonal to difference and doesn't add enough to be worthwhile to keep, so its weight is zeroed out

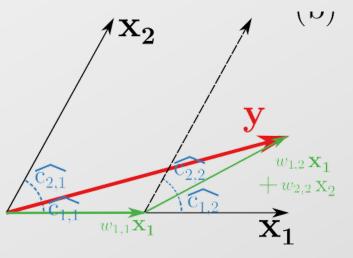
Coordinate descent is a popular algorithm for finding lasso optimum

- Pick initial guess w
- In iteration *i*, proceed through all *w*_k in random order
- For each k, find minimum of f(w) by varying only w_k
- Repeat for next *i* to convergence



Least angle regression selection (LARS) is a lasso solution that leads to sparse w (many zero)

- Start with all $w_k = 0$
- Select k for which $\mathbf{x}_k^T \mathbf{y}$ is largest
- Increase w_k until another descriptor j has larger correlation with residual: x_j^T(y-w_kx_k)
- Optimize w_k and w_j in direction equiangular between x_k and x_j until a 3rd is more correlated with new residual



Tallec et al.

22

Suggested Reading/Viewing

- Eugen Hruska and Fang Liu, Chapter 6, Machine learning: An overview. In *Quantum Chemistry in the Age of Machine Learning*.
 - Posted on UBLearns
- Gauthier Tallec, Gaétan Laurens, Owen Fresse-Colson, and Julien Lam, Chapter 11, Potentials based on linear models. In *Quantum Chemistry in the Age of Machine Learning*.

- Posted on UBLearns