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Electron correlation is essential for accurate

electronic structure, yet is neglected by HF

« Summary of HF formulas Coitm) =3 [ s e (mein)in
F()O'L — P& F — i'l, + (é . X) Xop;(1) —Z/E (1) (12) s (72)dTo
* Two applications using infinite basis-set limit

Hydrogen atom
1 electron

Helium atom
2 electrons

Eng =-0.500 00 au Eng =-2.86168 au
Ecxact = —0.500 00 au Ecxact = —2.903 72 au
Error = 0.04204 au
= 26.4 kcal/mol ~ 13 000 K



Roothaan-Hall HF treatment usually yields

more molecular orbitals than needed

. Coefficient matrix, C
e Method for solution of HF

equation by expressing molecular 4 (Cii Gz ... Gy
orbitals in terms of basis functions )_(2 C?’l C?’z a Cf’N
: : Cli :
pi(r) = D xu(r)Cu,i o oni
« Roothaan-Hall equation specifies 61 G2 ... On
coefficients C,; by minimizing HF '
expectation energy number of molecular orbitals is equal to

number of basis functions, which is
usually more than the number of
FC =5C¢ electron pairs. Lowest-energy orbitals
/ / . '\ . . i : ] . ] .,
Fock matrix  overlap matrix diagonal eigenvalue matrix are filled; remainder are “virtual orbitals



A wavefunction with electron correlation can be

constructed by summing SDs using virtual orbitals

* Sum Slater determinants to ensure antisymmetry

D+« Number of determinants

¥(1,2,3,...,N) =) &1(1,2,3,...,N)¢
=0 . .

Correlated wavefunction Different Slater determinants Coefficients to be determined

* @, 1s the usual HF “reference” determinant

* Other @, are formed from 1t by swapping in virtual orbitals



Slater determinants formed by swapping in

virtual orbitals to reference determinant
« Reference 1s SD formed from N lowest-energy orbitals

Py = |9017§027-'°790ia“°790j7°°°790N|
* A single orbital substitution with virtual orbital yields new SD

— Replace orbital i with virtual orbital a
(I)? — |90179027°"790a7°“790j7°°°a90N|

* Orbital a will be orthogonal to all other orbitals
— So new SD will be orthogonal to @,
« Easy creation of a set of orthonormal antisymmetric wavefunctions

— With V virtual orbitals, can create N X J single-substitution SDs
 Single substitutions, or “singles”



More determinants can be formed by

swapping in 2, 3, or more virtual orbitals

Py = |90179027-°°790i7'°°790j7"°790N|
* Double substitutions, or “doubles” use two virtual orbitals

b
(I)?j — |90179027"°7@&7"'79067"'790N|
— N(N—-1)/2 X V(V—1)/2 possible choices

— All normalized and mutually orthogonal
* Triples, quadruples, etc. follow 1n a similar manner

e General form of new Slater determinant sum
U = ®gco + Z olc + Z q)?jbc?f + Z <I>‘.’b,§c§?§ + ---+ up to N-tuples

1]
1<J 1<j<k
6 a<b a<b<c



The coefficients of the SD sum are

determined using the variation principle

Minimize energy expectation <\If|I-:T |\If>
For simplicity writing the SD sum as ¥ = Z ; d;cr
We need to evaluate the matrix elements <<I> | H|® J>

Minimization = eigenvalue equation involving H matrix

— Each eigenvector gives coefficients ¢; for one wavefunction

— Eigenvalues are electronic state energies

Each SD in the basis represents an electronic configuration
— Method is called Configuration Interaction (full CI (FCI) goes to N-tuples)



Hamiltonian matrix involves calculation of

ERIs, but Slater-Condon rules simplify things

e (BH|B) = Y by + = Z ([rr | ss] —[rs | sr])

determinant ®

rin ® T r,sin ® Electron-repulsion integrals
1 electron integrals

s (@ H|%E) = hy+ > (pa | 7] = [pr | 7d))
e (@| A% ) = [pg | rs] — [ps | rg

 For more than two substitutions 1n @, element 1s zero

° AISO: <¢O|ﬁ|¢g> — O Brillouin theorem

Q



The Hamiltonian matrix has large parts that

a ab abc
W, \7} N7} 7]
Vi I Vij Vij
Yur Eyy 0 dense 0
a : :
v 0 dense sparse Very sparse
d
e
ab e narse : :
W n sparse sparse extremely sparse
S
e
be very extremely
‘l‘ul‘ 0 o 3 extremely sparse
ik sparse sparse ’
Cramer, video 4.02
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Cramer, video 4.02
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Truncated CI

Number of SDs for FCI can be prohibitively huge.
TCI) is an option, but it has caveats

(
I ik

Ey

0

dense

0

sparse

Issues of size consistency
E(A+B) - E(A) + E(B) (for noninteracting A&B)
and size extensivity
lim E“"(N - A)/N = const
N—o00
arise with TCI, related to inconsistent

level of approximation for collected
vs. separate molecules

MCSCF (multiconfiguration SCF) and MRCI
(multireference CI) are compromise methods
between simple TCI and FCI



Total energy calculated for the ground state of

H, at 0.741 A internuclear separation

Method/basis No. of basis functions Total E/au

2 electrons!

HF/STO-3G 2 -1.116 706
HF/cc-pVDZ 10 -1.128 711 Note that cnergy Of each H
PR - atom 1s -—0.5 au, so binding
energy is tabulated value +1

HF/cc-pvVQZ 60 -1.133458

STO-3G is a minimal GTO basis: one 1s function per HF/cc-pV5Z 110 -1133607 — > Error: 25 kcal/mol ~ 13,000 K

hydrogen contracted from three GTOs, to fit a 1s e

STO with exponent 1.24. The other basis sets are

polarized, correlation-consistent valence double- FCI/STO-3G 2 _1.137274

(D) to quintuple- (5)¢ GTO basis sets developed

o . o — —’ 0 ~
specifically for post-HF calculations. The number of FCl/cc-pvDZ 10 1.163403 Error: 6.9 kcal/mol ~ 3500 K
contracted basis functions is listed. MP2 is FCl/cc-pVTZ 28 1172338

discussed in Section 22.3.
J. S. Sims and S. A. Hagstrom, ‘High precision FCl/cc-pvVQZ 60 -1.173 796
variational calculations for the Born-Oppenheimer

FCl/cc-pV5Z 110 -1174223 ——» - L. ~
energies of the ground state of the hydrogen \. fecp 2ueElEI L] = 6l
molecule’, J. Chem. Phys. 124 (2006) 094101. Bt ~1.174 476
MP2/cc-pV5Z 110 -1.16722 —— > Error: 4.5 kcal/mol ~ 2300 K
J Autschbach  CCSD/cc-pV5Z 110 -1174223 — > Error: 0 kcal/mol
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Coupled Cluster (CC) methods group SD excitations

to allow focus on more highly correlated electrons

* General N-tuple SD sum
¥ = ®pcp + Z ®rci + Z @?chgf + Z <I>‘-‘{’,§c§’f,§ +---+ up to N-tuples

1]
1<j 1<j<k
a<b a<b<e

* Define operators Cluster ampitudes, TBD

N /
F=) T F1=) B Fy=) B ete
m

i,a 1<jJ
a<b

* Given a complete 1-particle basis, exact wavefunction of N-
electron system generated from a reference @, via

67Q(I)0:(I)0—|—7¢(I)0—|—%7A'2(I)0—|—...

O ZCI)0+7A'1<I)0—|—7’:2<I)0—|—7¢17A'2(I)0—|—%'f'?@o—l—...



Unlike TCI, truncation of CC framework can

maintain size extensivit

e Full CC 1s just as unwieldy as FCI

 Cluster operator is truncated to make approach tractable
— E.g., CCSD (coupled cluster singles doubles)
T =71+ T2
« Using exponential of operator makes approach size extensive

— E.g., in CCSD, triple and quadruple excitations are still present, via

7-2, 7-27-1, 7-1
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Solution of CC equations does not rely on

the variation principle

Schrodinger equation for CC wavefunction He"®, = e’ ®F

Apply inverse of exponential operator to each side
6_%ﬁ67ﬁ(130 = (I)()E
+ Energy from: <<I>0 e THe | <I>0> — (B | B)E = E

* Cluster amplitudes ( coefficients defining T operators) use,
for example <<I>?}’ e THe | <I>o> =0 (similar for other SDs)
— Leads to set of nonlinear equations for amplitudes in terms of 1- and
2-electron integrals

— Solved iteratively
14



Perturbation theory treats an intractable system

by focusing on how it differs from a tractable one

* Very general approach that 1s used in every field of science
and engineering

* Sometimes the difference 1s exactly what’s wanted

* In molecular modeling, there are many examples
— With/without electric or magnetic field
— With/without spin coupling
— Movement of an atom to get a force constant
— With/without electron correlation € our application

15



Cast all quantities as a series in some (small)

parameter, relative to reference (¥

* Series for Hamiltonian, wavefunction, and energy

" 1 d"H _.(0) s 3 )
H(A):Zn! =\ =H ) )\%H N+ H XN+ 0\

Often truncate H here without approximation, defining H")

d’n
Pp(A) =) i! d;f = ¢ + WX + BN 1+ BN 4+ o (2

1 d"E
. n _ 1(0) (1) (2) y2 (3) 3 4
E(A)_Zn! A = BV + EUA+ EPN + BUA + o))

16



Insert in SE and collect terms of the same order

to generate new equations for coefficients

~ Hser = Series[H[A], {1, 0, 3}] /. {Derivative[n ]J[H][_]=n! H,, H[_] > Ho}
H@ @E Phiser = Series[&[A], {X, 0, 3}] /. {Derivative[n_][&][_]=>»n! &,, 8[_] = &}
i eser = Series[e[A], {1, 0, 3}] /. {Derivative[n_][e][_]=»n! e,, e[_] »ep}

Hser Phiser - Phiser eser;

E H (Z) Ai @ (j) Aj :COeff'iC'ientL-ist[x, A] // TableForm

Ho + Hy A+ Hy X2 + H3 A3 +0[A]*
(2¥)

Bo+ By A+ By A2+ 33 A3 +0[0]*

= S NBON

//TableForm=
-eg Bp + Ho o

-e; &g + Hy 3p — €9 &1 + Ho &1
-€5 Bg + Hy 39 - €1 B3 + H1 &1 - €9 35 + Hp &2

o Collected terms -@3®p +H3 &g - €, 3, +Hy &) - @1 &, + Hy &, - eg &3 + Hp &3
)\0 . H()(I)O — 60(]:)0

AL —e1Py) — 9P + H1Pyg + HyP; =0
A2 —eg®Py — 1P — egPy + Hy®y + H1 P + HyPy =0
17 )\3 . —63(13() — 62(191 — 61(192 . 60(193 + Hg(I)() -+ H2(I)1 + chI)z + H()(I)g =0



To get first-order energy correction, project

Al equation on @

ch]:)() 7 HO(Pl — 61(130 4 60(131
(%0 | Hy ‘I’o> (@0 | Ho | ®1) = (Po | €1 | Ro) + (o [ eo | D)
<(I)() H; <H0(I)0 ‘ (I)1> = 61<(I)0 | (I)0> I 60(@0 ‘ (I)1>

®) +
(@0 | H1 | ®9) + €0(Po | 1) = e1(®o | Po) + €0(Po | P1)
(@0 | H1 | ®9) = €1

HoA

» Result 1s known as Hellmann-Feynman theorem

« Equation for the 2"¢-order term can be written

18



Moller-Plesset (MP) theory uses perturbation
to introduce electron correlation

SCF HF 2-electron energy

 First-order theory (MP1) yields just the HF energy

» Second-order theory uses CI wavefunctions to represent
perturbations to ®®. Result for correlation energy is:

ElS/?Pz Z | 1a | ]b [Zb | ja’Hz ij,a,b are the

£; + 83 — 5. — swapped orbitals,

i<j with energies g,

a<b
19



Performance of methods is balanced against

computational cost
Post-HF levels: Price/Performance

HF < MP2 ~ MP3 ~ CCD < CISD

< MP4SDQ ~ QCISD ~ CCSD < MP4 < QCISD(T) ~ CCSD(T) < ...

Scaling Method(s)
behavior

N HF

N3 ﬂ

NS MP3, CISD. MP4SDQ, CCSD, QCISD

N7 MP4, CCSD(T), QCISD(T)

N8 MPS5, CISDT, CCSDT

N? MP6

Cramer, video 4.03 N10 MP7,CISDTQ, CCSDTQ
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May 2024
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1 2 3 4 5

791112

Project 1D Final exam
T« 0 16595 9:15pm

Baldy 105
21 22 23 . .. 26

28 29 30 31



Suggested Reading/Viewing

+ Autschbach, Chapter 20, 22.1-22.4

« Cramer
— 4.02 https://www.youtube.com/watch?v=5BZxa6{ZHZU
— 4.03 https://www.youtube.com/watch?v=np81k16E4I0
— 4.05 https://www.youtube.com/watch?v=n3D1c8zV-x0
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