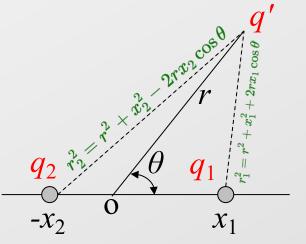
Lecture 17 Electrostatics, Part 2

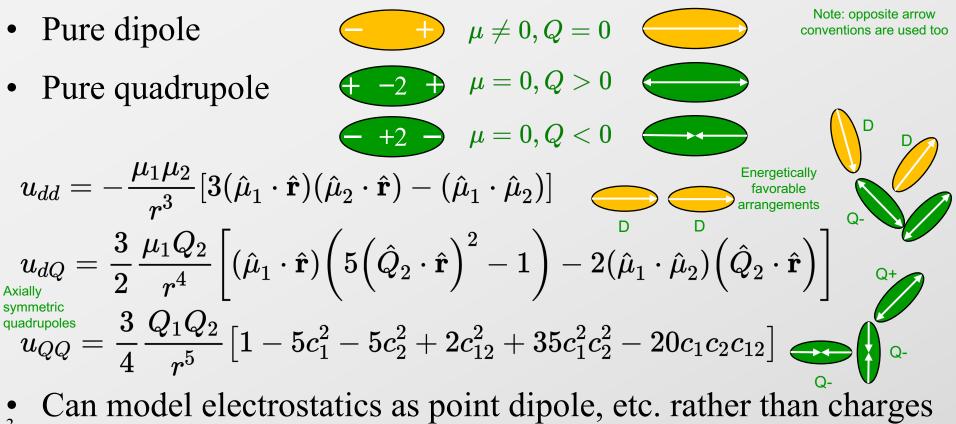
electric potential and field; polarization; van der Waals forces


Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

Multipole moments quantify the most important features of a charge distribution

$$E_{ ext{el}} = rac{q'(q_1+q_2)}{r} + rac{q'(q_2x_2-q_1x_1)}{r^2}\cos heta \ + rac{q'(q_1x_1^2+q_2x_2^2)}{r^3}rac{1}{4}(1+3\cos 2 heta) + \mathcal{O}ig(rac{1}{r}ig)^4 \ E_{ ext{el}} = rac{q'Q}{r} + rac{q'\mu}{r^2}\cos heta + rac{q'\Theta}{r^3}rac{1}{4}(1+3\cos 2 heta) + \dots$$

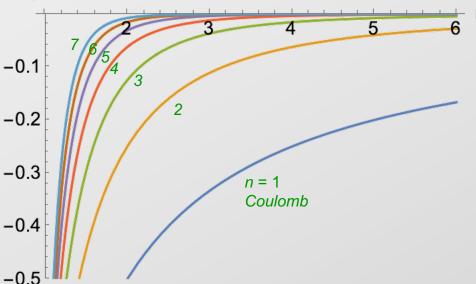


Review

- The electrostatic moments are
 - Charge $q = q_1 + q_2$
 - Dipole
 - Dipole $\mu = q_2 x_2 q_1 x_1$ Quadrupole $\Theta = q_1 x_1^2 + q_2 x_2^2$

Next would be octupole

Energies for interaction of multipoles with each other are available


3

The direct interaction range for different multipoles varies greatly

- Coulomb interaction is very long ranged!
 - Integral over all contributions diverges, except for cancellation of positive and negative contributions r^{-n}

Decay rates for multipole interactions
--

	charge Q	dipole μ	quadrupole O	octupole 王
Q	R^{-1}	R^{-2}	<i>R</i> ⁻³	R^{-4}
и	R^{-2}	R^{-3}	R^{-4}	R^{-5}
Э	R^{-3}	R^{-4}	R^{-5}	R^{-6}
Ξ	R^{-4}	R^{-5}	R^{-6}	R^{-7}

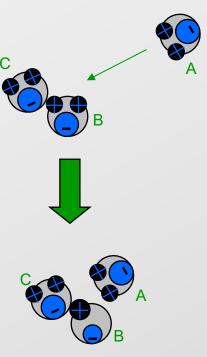
 $\int^\infty {1\over r} 4\pi r^2 dr$

Simple orientation average of dipole energy is zero; Boltzmann-weighted average is not

$$\langle u_{dd} \rangle = \int_{0}^{\pi} u_{dd}(\theta) \sin(\theta) d\theta = 0$$

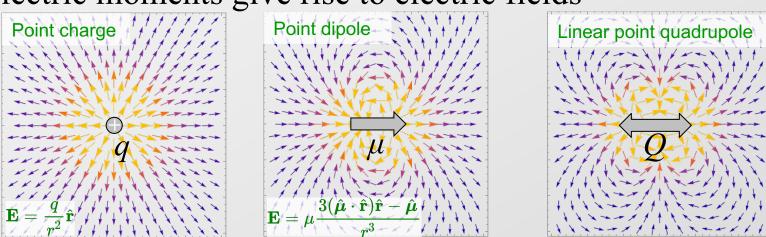
$$\int_{0}^{\pi} u_{dd}(\theta) e^{-u_{dd}(\theta)/k_{\mathrm{B}}T} \sin(\theta) d\theta = 0$$

 $3~k_{
m B}T~r^{6}$,

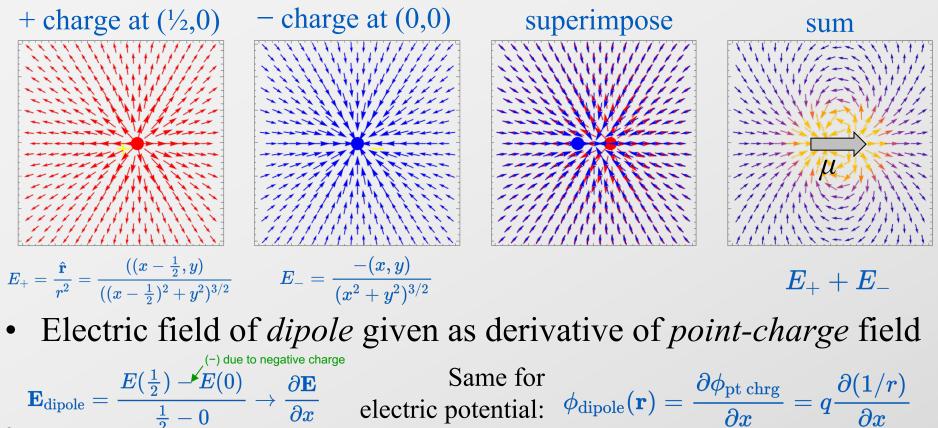

 \tilde{r}^{-6} decay

 $\int_{0}^{\pi} e^{-u_{dd}(heta)/k_{
m B}T} \sin(heta) d heta$

5


A molecule's electron distribution can change with its conformation, and by other molecules

- The charge distribution on a molecule, A, creates an electric field that can change the charge distribution on another molecule, B
- The change in B's charge distribution can affect how it interacts with a third molecule, C
- Polarization is an important source of 3-body and higher-order contributions to the energy



Distortion of charge density is result of interaction with electric field

- Electric potential ϕ yields energy of a charge q: $u = \phi(\mathbf{r})q$
- Electric field is gradient of potential: E(r) = -∇φ(r)
 It provides the force on a charge q: F = Eq
- Electric moments give rise to electric fields

Dipole field is derived as sum of two opposite point-charge fields, slightly displaced

Multipole-moment potential and electric field can be given in terms of point-charge derivatives

- Rank-1 polytensors for moments and derivatives
- $$\begin{split} \mathbf{M}_{A} &= \left(Q^{A}, \mu_{x}^{A}, \mu_{y}^{A}, \mu_{z}^{A}, \Theta_{xx}^{A}, \Theta_{xy}^{A}, \Theta_{xz}^{A}, \Theta_{yy}^{A}, \Theta_{yz}^{A}, \Theta_{zz}^{A}, \ldots\right)^{\mathrm{T}} \\ \mathbf{T}^{(1)} &= \left(1 \quad \frac{\partial}{\partial x_{A}} \quad \frac{\partial}{\partial y_{A}} \quad \frac{\partial}{\partial z_{A}} \quad \frac{\partial^{2}}{\partial x_{A}^{2}} \quad \frac{\partial^{2}}{\partial x_{A} \partial y_{A}} \quad \frac{\partial^{2}}{\partial x_{A} \partial y_{A}} \quad \frac{\partial^{2}}{\partial x_{A} \partial z_{A}} \quad \frac{\partial^{2}}{\partial y_{A} \partial x_{A}} \quad \frac{\partial^{2}}{\partial y_{A} \partial x_{A}} \quad \frac{\partial^{2}}{\partial y_{A} \partial z_{A}} \quad \frac{\partial^{2}}{\partial z_{A} \partial y_{A}} \quad \frac{\partial^{2}}{\partial z_{A} \partial y_{A}} \quad \frac{\partial^{2}}{\partial z_{A}^{2}} \quad \cdots\right) \frac{1}{r} \\ &= \left(\frac{1}{r} \quad -\frac{x}{r^{3}} \quad -\frac{y}{r^{3}} \quad -\frac{z}{r^{3}} \quad -\frac{-2x^{2}+y^{2}+z^{2}}{r^{5}} \quad \frac{3xy}{r^{5}} \quad \frac{3xz}{r^{5}} \quad \frac{3xy}{r^{5}} \quad -\frac{x^{2}-2y^{2}+z^{2}}{r^{5}} \quad \frac{3yz}{r^{5}} \quad$$
- Gradient of electric potential ϕ gives electric field $\mathbf{E}_{\mathbf{T}_{\mathrm{dipole}}^{(2)}}$ $\phi = \mathbf{T}^{(1)} \mathbf{M}_A$

$$\mathbf{E} = \nabla \phi$$

$$= \left(\nabla \mathbf{T}^{(1)}\right) \mathbf{M}_{A} = \begin{pmatrix} \frac{\partial \mathbf{T}^{(1)}}{\partial x_{B}} \\ \frac{\partial \mathbf{T}^{(1)}}{\partial y_{B}} \\ \frac{\partial \mathbf{T}^{(1)}}{\partial z_{B}} \end{pmatrix} \mathbf{M}_{A} = \begin{pmatrix} \frac{x_{AB}}{r_{AB}^{3}} & \frac{r_{AB}^{2} - 3x_{AB}^{2}}{r_{AB}^{5}} & -\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & -\frac{3x_{AB}z_{AB}}{r_{AB}^{5}} & \cdots \\ \frac{y_{AB}}{r_{AB}^{3}} & \frac{y_{AB}}{r_{AB}^{3}} & \frac{r_{AB}^{2} - 3y_{AB}^{2}}{r_{AB}^{5}} & \frac{3y_{AB}z_{AB}}{r_{AB}^{5}} & \cdots \\ \frac{z_{AB}}{r_{AB}^{3}} & \frac{z_{AB}}{r_{AB}^{3}} & \frac{-\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{3y_{AB}z_{AB}}{r_{AB}^{5}} & \cdots \\ \frac{z_{AB}}{r_{AB}^{3}} & \frac{-\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{3y_{AB}z_{AB}}{r_{AB}^{5}} & \cdots \\ \frac{-\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \cdots \\ \frac{-\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \cdots \\ \frac{-\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \cdots \\ \frac{-\frac{3x_{AB}y_{AB}}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}} & \frac{1}{r_{AB}^{5}$$

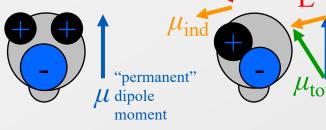
Interaction energy of multipole moments can also be given in polytensor framework

- Electric moment vector (polytensor) Interaction energy $\mathbf{M}_{A} = \begin{pmatrix} Q^{A}, \mu_{x}^{A}, \mu_{y}^{A}, \mu_{z}^{A}, \Theta_{xx}^{A}, \Theta_{xy}^{A}, \Theta_{xz}^{A}, \Theta_{yy}^{A}, \Theta_{yz}^{A}, \Theta_{zz}^{A}, \ldots \end{pmatrix}^{\mathrm{T}} \qquad U_{AB} = \mathbf{M}_{B}^{T} \mathbf{T}^{(2)} \mathbf{M}_{A}$
- Derivative matrix (rank-2 polytensor) E.g., dipo

E.g., dipole-dipole special case

$$\mathbf{T}^{(2)} = \begin{pmatrix} 1 & \frac{\partial}{\partial x_B} & \frac{\partial}{\partial y_B} & \frac{\partial}{\partial z_B} & \cdots \\ \frac{\partial}{\partial x_A} & \frac{\partial^2}{\partial x_A \partial x_B} & \frac{\partial^2}{\partial x_A \partial y_B} & \frac{\partial^2}{\partial x_A \partial z_B} & \cdots \\ \frac{\partial}{\partial x_A} & \frac{\partial^2}{\partial y_A \partial x_B} & \frac{\partial^2}{\partial y_A \partial y_B} & \frac{\partial^2}{\partial y_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial y_A \partial y_B} & \frac{\partial^2}{\partial y_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{T}^{(2)}_{\mathrm{dipole}} = \begin{pmatrix} \frac{\partial}{\partial x_A \partial x_B} & \frac{\partial}{\partial x_A \partial y_B} & \frac{\partial}{\partial x_A \partial z_B} \\ \frac{\partial}{\partial y_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{T}^{(2)}_{\mathrm{dipole}} = \begin{pmatrix} \frac{\partial}{\partial x_A \partial x_B} & \frac{\partial^2}{\partial x_A \partial y_B} & \frac{\partial^2}{\partial x_A \partial z_B} \\ \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial y_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial x_B} & \frac{\partial^2}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial z_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \frac{\partial}{\partial z_A \partial x_B} & \cdots \\ \frac{\partial}{\partial z_A \partial x_B} & \cdots$$

Polarizability tensor quantifies how easily a molecule's charge distribution can be changed

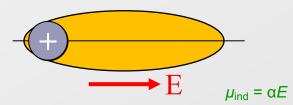

α

• Induced dipole moment

Could also do induced quadrupole, etc.

$$oldsymbol{\mu}_{ ext{ind}} = oldsymbol{lpha} \cdot \mathbf{E}$$

No electric field



• Diagonalize $\boldsymbol{\alpha}$ and find principal axes $\boldsymbol{\alpha}' = \begin{pmatrix} \alpha'_{xx} & 0 & 0\\ 0 & \alpha'_{yy} & 0\\ 0 & 0 & \alpha'_{zz} \end{pmatrix}$

$$= \begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}^{\text{Induced dipole}} \underset{\text{direction due to}}{\underset{\text{electric field in z}}{\underset{\text{direction due to}}{\underset{\text{electric field in z}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{electric field in z}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{electric field in z}}{\underset{\text{direction}}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{\text{direction}}{\underset{direction}}{\underset{direction}}}}}}}}}}}}}}$$

Polarization energy considers work of inducing dipole as well as its final electrostatic interaction

• Imagine inducing a dipole by moving a point charge reversibly along *x*

- Differential work: $dW = Fdx = (qE)dx = Ed\mu$
- Use $d\mu_{ind} = \alpha dE$ and integrate: $W = \int_{0}^{E} Ed(\alpha E) = \frac{1}{2}\alpha E^{2} = \frac{1}{2\alpha}\mu_{ind}^{2}$
- Energy of induced dipole in field: $-\mu_{ind} E = -\alpha E^2$
- Net energy of induced dipole: $-\alpha E^2 + \frac{1}{2}\alpha E^2 = -\frac{1}{2}\alpha E^2$
- More generally: $u_{\text{ind}} = -\frac{1}{2}\boldsymbol{\alpha} : \mathbf{E}\mathbf{E} = -\frac{1}{2}\mathbf{E}\cdot\boldsymbol{\alpha}\cdot\mathbf{E}$

A variety of approaches can be used to model polarization

- Fluctuating charge (FQ)
 - Charges change but don't move
 - Limits on direction in which response can be made (e.g., out of plane)

Larger charge here

Drude

charge here

- Drude oscillator (DO)
 - Charges move, but don't change
 - More interaction sites to process
- Point dipole (PD)
 - Strength and direction of dipole responds to field dipole
 - Can model anisotropic polarizability

In principle, induced electrostatic features need to be converged to self-consistency

• A direct solution is possible

$$\boldsymbol{\mu}_{\text{ind}} = \boldsymbol{\alpha} \mathbf{E}_{\text{tot}} = \boldsymbol{\alpha} (\mathbf{E}_{\text{static}} + \mathbf{E}_{\text{ind}}) = \boldsymbol{\alpha} (\mathbf{E}_{\text{static}} + \mathbf{T}_{\text{dipole}}^{(2)} \boldsymbol{\mu}_{\text{ind}})$$

$$\boldsymbol{\mu}_{\text{ind}} = \left(\boldsymbol{\alpha}^{-1} - \mathbf{T}_{\text{dipole}}^{(2)} \right)^{-1} \mathbf{E}_{\text{static}} \equiv \mathbf{R} \mathbf{E}_{\text{static}} \qquad u = -\frac{1}{2} \boldsymbol{\alpha}^{-1} : \boldsymbol{\mu}_{\text{ind}} \boldsymbol{\mu}_{\text{ind}}$$
But the matrices are very large, $3N \times 3N$

$$- E.g., for N = 3$$

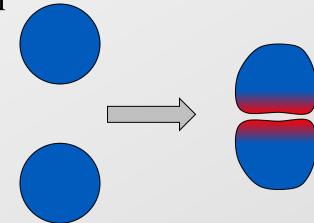
$$= \begin{pmatrix} \boldsymbol{\alpha}_{A} & (0)_{3\times3} & (0) \\ (0) & \boldsymbol{\alpha}_{B} & (0) \\ (0) & (0) & \boldsymbol{\alpha}_{C} \end{pmatrix} \quad \mathbf{T}_{\text{dipole}}^{(2)} = \begin{pmatrix} (0)_{3\times3} & \mathbf{T}_{AB}^{(2)} & \mathbf{T}_{AC}^{(2)} \\ \mathbf{T}_{CA}^{(2)} & \mathbf{T}_{CB}^{(2)} & (0) \end{pmatrix} \quad \boldsymbol{\mu}_{\text{ind}} = \begin{pmatrix} \boldsymbol{\mu}_{A,x} \\ \boldsymbol{\mu}_{A,y} \\ \boldsymbol{\mu}_{A,z} \\ \vdots \end{pmatrix} \quad \mathbf{E}_{\text{static}} = \begin{pmatrix} \mathbf{E}_{A,x} \\ \mathbf{E}_{A,y} \\ \mathbf{E}_{A,z} \\ \mathbf{E}_{B,x} \\ \vdots \end{pmatrix}$$

 $\left(\mu_{C,z} \right)$

Fstatic

• Usually iteration is used instead

 $\alpha =$

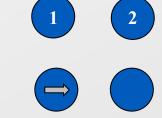

14

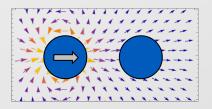
Electrostatics for some simple molecules

Images	Molecule	μ, Debye	Q, B	α , A ³
not to	He	0	0	0.206
	Ar	0	0	1.642
	O ₂	0	-0.4	1.48
	N ₂	0		1.7
3(3)	Cl ₂	0	4.2	4.6
	HF	→ 1.8	2.6	→0.8
	CO ₂	0	-4.3	2.9
	H ₂ O	→1.85	+1.97 (xx)	1.5 (xx)
Contraction of the second seco			-1.89 (yy)	1.43 (yy)
			-0.08 (zz)	1.45 (zz)
2 2	CH ₄	0	0	2.6
	CCl ₄	0	0	→11.2
	C_6H_6	0	-9.5	→10.6
	NH ₃	1.5	-2.3	2.22
15	C_2H_6	0	-1.2	4.4

Short-range repulsion is due to exchange and Coulomb effects

- Approach of molecules causes distortion of electron clouds, as they avoid each other due to Pauli exclusion
 - This increases the energy of the pair
 - Also, shifted electron clouds attract nuclei in a direction that pulls molecules apart


- Theory provides little guidance on form of model
 - Total repulsion energy drops quickly (exponentially) with separation
 - Not expressible in terms of properties of individual atoms


Long-range attraction is due to coordinated dipole (and higher) fluctuations

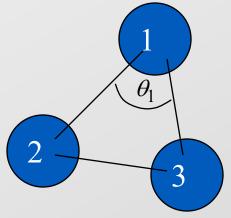
- Consider two neutral atoms
 - Too separated for exchange or charge overlap
- Electrons constantly moving
 - Atom-1 fluctuation makes instantaneous dipole
- This creates an electric field about atom 2 - Field: $E \sim \mu_1 r^{-3}$ $E = \mu \frac{3(\hat{\mu} \cdot \hat{r})\hat{r} - \hat{\mu}}{r^3}$
- Field induces dipole in atom 2
 - Induction: $\mu_{\mathrm{ind}} = \alpha_2 E$
- Net energy of induced dipole

- Dispersion energy: $u_{\text{disp}} \sim -\frac{1}{2}\alpha_2 E^2 \sim -\frac{1}{2}\alpha_2 \mu_1^2 r^{-6} \sim -\alpha_2 \langle \mu_1^2 \rangle r^{-6} \sim -\alpha_2 \alpha_1 r^{-6}$

 \rightarrow

time average

Long-range attraction is due to coordinated dipole (and higher) fluctuations


- London dispersion energy decays as r^{-6}
 - "dispersion" has to do with polarizability and diffraction of light
- Hartree-Fock is unable to exhibit this behavior
 - Lack of correlation in model
 - Basic DFT also fails to accommodate this effect

Theoretical results have been developed for multibody dispersion, but are rarely used

- Axilrod-Teller
 - consider response of atoms 2 and 3 to fluctuation in dipole moment of atom 1
 - average over all fluctuations in 1

$$E_3(1,2,3)=rac{3}{2}E_0rac{lpha_1lpha_2lpha_3}{r_{12}^3r_{13}^3r_{23}^3}(3\cos heta_1\cos heta_2\cos heta_3+1)$$

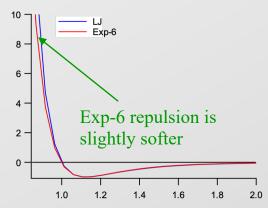
- this is rarely, if ever, used in practice

Van der Waals energy is the term used to describe repulsion + dispersion interactions

- Two popular approaches to model repulsion
 - Inverse power $U_{vdW}^{rep} \sim \frac{A}{r^n}$ Exponential $U_{vdW}^{rep} \sim Ae^{-Br}$ typically $n \sim 9 - 12$ 2 parameters

×10³

5


0

Exp-6 short-range

attraction

• Combine with attraction term

- Lennard-Jones
$$U = \frac{A}{r^{12}} - \frac{C}{r^{-6}} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

- Exp-6 $U = Ae^{-Br} - \frac{C}{r^6}$ Beware of anomalous

a.k.a. "Buckingham" or "Hill" potential

Combining rules are used to estimate parameters for unlike atoms

- Approach is to use same model potential, but with "averaged" parameters
 - No ambiguity for Coulomb interactions $u(r) = \frac{q_i q_j}{r_i}$
 - For effective potential (e.g., LJ), it is not clear what to do
- Lorentz-Berthelot is a widely used choice

$$egin{aligned} \sigma_{12} &= rac{1}{2}(\sigma_1 + \sigma_2) \ arepsilon_{12} &= \sqrt{arepsilon_1 arepsilon_2} \end{aligned}$$

- Others have been proposed
- Treatment is a very weak link in quantitative applications

Many force field models have been developed

This is just a few of the most popular ones

Force field	Estr	Ebend	Eoop	E _{vdw}	E _{el}	Ecross	Molecules
AMBER ⁸²	P2	P2	imp.	12-6	Charge, PD	None	Biomolecules
AMOEBA ⁸³	P2	P2	•	14-7	Quad, PD	None	Biomolecules
CFF91/93/95 ⁸⁴	P4	P4	P2	9–6	Charge	ss, bb, st, sb, bt, btb	General
CHARMM ⁸⁵	P2	P2	P2(imp.)	12-6	Charge DO	None	Biomolecules
COMPASS ⁸⁶	P4	P4	P2	9-6	Charge	ss, sb, st, bb, bt, bbt	Organic
COSMIC ⁸⁷	P2	P2		Morse	Charge	None	General
CVFF ⁸⁸	P2 or	P2	P2	12-6	Charge	ss, bb, sb,	General
	Morse				0	btb	
DREIDING ⁸⁹	P2 or	P2(cos)	P2(cos)	12–6 or	Charge	None	General
	Morse			Exp-6	0		
EAS ⁹⁰	P2	P3	None	Exp-6	None	None	Alkanes
ECEPP ⁹¹	Fixed	Fixed	Fixed	12-6 and	Charge	None	Proteins
				12-10	stange		
EFF ⁹²	P4	P3	None	Exp-6	None	ss, bb, sb, st, btb	Alkanes
ENCAD ⁹³	P2	P2	imp.	12-6	Charge	None	Biomolecules
ESFF ⁹⁴	Morse	P2(cos)	P2	9-6	Charge	None	All elements
GAFF ⁹⁵	P2	P2	imp	12-6	Charge	None	Organic
GROMOS ⁹⁶	P2	P2	P2(imp.)	12-6	Charge, DO	None	Biomolecules
MM2 ⁶	P3	P2+P6	P2	Exp-6	Dipole	sb	General
MM3 ⁷	P4	P6	P2	Exp-6	Dipole or charge	sb, bb, st	General (all elements)
MM4 ⁹⁷	P6	P6	imp.	Exp-6	Charge	ss, bb, sb, tt, st, tb, btb	General
MMFF ⁹⁸	P4	P3	P2	14-7	Charge	sb	General
MOMEC ⁹⁹	P2	P2	P2	Exp-6	Charge, FQ	None	Metal coordinatio
NEMO ¹⁰⁰	Fixed	Fixed	None	Exp-6	Quad, PD	None	Special
OPLS ¹⁰¹	P2	P2	imp.	12-6	Charge	None	Biomolecules
PFF ¹⁰²	P2	P2	imp.	12-6	Charge, FQ, PD	None	Proteins
PROSA ⁵⁸	P2	P2	imp.	12-6	Charge, FQ, PD	None	Proteins
QMFF ¹⁰³	P4	P4	P2	9–6	Charge	ss, sb, st, bb, bt, btb	General
SDFF ¹⁰⁴	P4	P4		9-6	Quad, PD	ss, st, tt	Hydrocarbons
SHAPES ¹⁰⁵	P2	$\cos(n\theta)$	P2(imp.)	12-6	Charge	None	Metal coordinatio
TraPPE ¹⁰⁶	Fixed	P2	Fixed	12-6	Charge	None	Organic
TRIPOS ¹⁰⁷	P2	P2	P2	12-6	Charge	None	General
UFF ⁸⁰	P2 or Morse	$\cos(n\theta)$	imp.	12-6	Charge	None	All elements
YETI ¹⁰⁸	P2	P2	imp.	12–6 and 12–10	Charge	None	Proteins

F. Jensen

Notation. Pn: polynomial of order n; Pn(cos): polynomial of order n in cosine to the angle; Pn(imp.): polynomial of order n in the improper angle; $cos(n\theta)$: Fourier term(s) in cosine to the angle; Exp–6: exponential + R^{-6} ; n - m: $R^{-n} + R^{-m}$ Lennard-Jones-type potential; Quad: electric moments up to quadrupoles; FQ: fluctuating charge, DO: Drude oscillator, PD: point dipole; Fixed: not a variable; improper torsional angle; ss: stretch–stretch; bb: bend–bend: sb: stretch–bend; st: stretch–torsional; bt: bend–torsional; bt: bend–torsional, btb: bend–torsional-bend.

Suggested Reading/Viewing

- Frank Jensen, Introduction to Computational Chemistry, 3rd ed., Wiley (2017). Chapter 2. Available online via UB library:
 - <u>https://search.lib.buffalo.edu/permalink/01SUNY_BUF/9qhqtp/</u> <u>alma9939265811804803</u>
- C.G. Gray and K.E. Gubbins, *Theory of Molecular Fluids*, Vol. 1: Fundamentals (1984).
 - Detailed, comprehensive discussion of molecular electrostatics
 - Not required reading. Recommended for anyone needed to look at the topic in more detail.