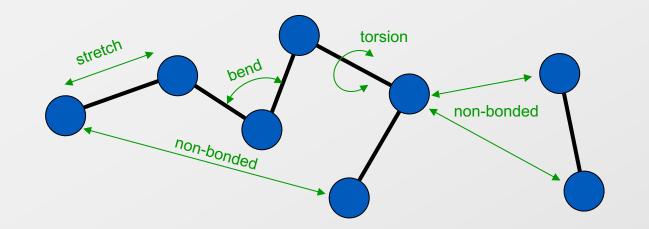
Lecture 16 Electrostatics, Part 1

n-body expansion; multipole moments

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

Molecular-mechanics energy is written as a sum of bonded and nonbonded terms



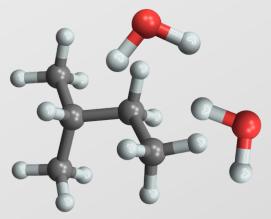
$$E_{\rm MM} = \underbrace{E_{\rm str} + E_{\rm bend} + E_{\rm tors} + E_{\rm cross}}_{\rm bonded} + \underbrace{E_{\rm vdW} + E_{\rm el}}_{\rm non-bonded}$$

*Inter*molecular energy is treated as sums of 2-body, 3-body, 4-body, etc. interactions

• Sums over molecules

$$E(\mathbf{r}^{N}) = \sum_{i} E_{1}(\mathbf{r}_{i}) + \sum_{i} \sum_{j>i} E_{2}(\mathbf{r}_{i}, \mathbf{r}_{j}) + \sum_{i} \sum_{j>i} \sum_{k>j} E_{3}(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) + \dots$$
Intramolecular, pairwise sum sum over triplets

 Each term *E_n* for *n* > 1 is itself a sum over atom pairs (or larger groups, in principle) between molecules



Intermolecular energy is treated as sums of 2-body, 3-body, 4-body, etc. interactions 4-molecule example 70 **90** 100 120 E_1 100 90 70 120 $E_2(i,j) = E_{\text{Tot}}(i,j) - E_1(i) - E_1(j)$ 240 240 180 200 240 E_2 40 30 20 50 20 30 $E_{3}(i,j,k) = E_{\text{Tot}}(i,j,k) - E_{2}(i,j) - E_{2}(i,k) - E_{2}(j,k)$ $-E_1(i) - E_1(j) - E_1(k)$ 358 396 () 387 E_3 8 409-40-30-20-100-90-120 $E_{ ext{Tot}}(1,2,3,4) = \sum_i E_1(i) + \sum_{i>i} E_2(i,j) + \sum_{k>i>i} E_3(i,j,k) + E_4(1,2,3,4)$ E_{A} =(100+90+120+70)+(40+30+20+30+20+50)+(9+8+6+7)+1

Use of pairwise-additivity is widespread, even though it accounts for only 80-90% of the energy

- Consequently, pair models that are fit to bulk properties do not describe true two-body interactions
- Instead, they implicitly account for multibody effects
- Models fit this way lose accuracy when applied at other densities
- This is accepted because higher-order contributions are expensive to calculate
 - Also, many models focus on bio, hence only a narrow set of conditions

Except at close separations, Coulomb forces govern non-bonded interactions

- Electron density about a molecule is not uniform
- This gives rise to regions of positive and negative charges

6

• The classical Coulomb integral gives the energy

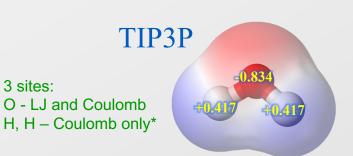
$$E_{
m Coul}=\int\int \int rac{
ho(1)
ho(2)}{r_{12}}d1d2$$

• In practice, the charge distributions are represented in approximate forms that simplify modeling and calculation

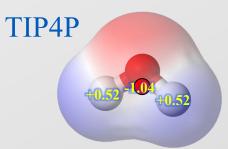
Placement of partial charges is a basic way to represent the electron density

• Point charges on different molecules interact via Coulomb's law

- Fit is underspecified, so there is an art to doing it effectively
- Charges may or may not coincide with atom centers
 - Example: two water models



TIP = "Transferable Intermolecular Potential"



4 sites: O - LJ only M, H, H – Coulomb only

Many models for water have been proposed. It is difficult to get all properties accurately

Table 2.6 A selection of water models and associated properties.^{112, 113}

Model property	SPC/E	TIP3P	TIP4P	TIP4P/2005	TIP5P	ВКЗ	AMOEBA	Exp.
$T_{ m m}$	215	146	232	252	274	250	261	273
ho	0.994	0.98	0.988	0.993	0.979	0.997	1.000	0.997
$\Delta H_{ m vap}$	49.3	42.0	44.6	50.2	43.8	45.8	43.5	44.0
$C_{ m p}$	88	79	84	88	121	92	88	75
arepsilon	68	94	50	58	91	79	81	78

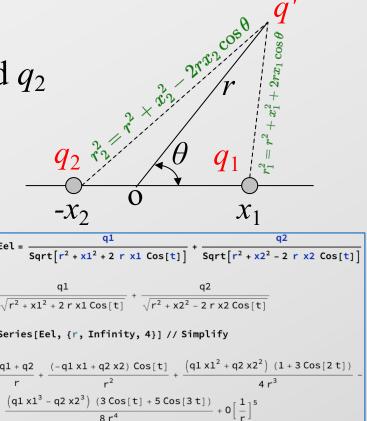
 $T_{\rm m}$: melting temperature (K), ρ : density at 298 °C (g/ml), $\Delta H_{\rm vap}$: heat of vaporization (kJ/mol), $C_{\rm p}$: heat capacity (J/mol K), ε : dielectric constant.

F. Jensen

At large separations, details of the charge distribution are less important

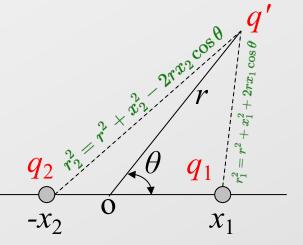
- Consider a point charge q' some distance from a pair of charges q_1 and q_2 $E_{el} = \frac{q'q_1}{\left(r^2 + x_1^2 + 2rx_1\cos\theta\right)^{\frac{1}{2}}} + \frac{q'q_2}{\left(r^2 + x_2^2 - 2rx_2\cos\theta\right)^{\frac{1}{2}}} - \frac{1}{2rx_1^2}$
- Expand in series for $r \rightarrow \infty$

$$egin{aligned} E_{ ext{el}} =& rac{q'(q_1+q_2)}{r} + rac{q'(q_2x_2-q_1x_1)}{r^2}\cos heta \ &+ rac{q'(q_1x_1^2+q_2x_2^2)}{r^3}rac{1}{4}(1+3\cos 2 heta) + \mathcal{O}igg(rac{1}{r}igg)^4 \end{aligned}$$



Multipole moments quantify the most important features of a charge distribution

$$E_{ ext{el}} = rac{q'(q_1+q_2)}{r} + rac{q'(q_2x_2-q_1x_1)}{r^2}\cos heta \ + rac{q'(q_1x_1^2+q_2x_2^2)}{r^3}rac{1}{4}(1+3\cos 2 heta) + \mathcal{O}ig(rac{1}{r}ig)^r \ E_{ ext{el}} = rac{q'Q}{r} + rac{q'\mu}{r^2}\cos heta + rac{q'\Theta}{r^3}rac{1}{4}(1+3\cos 2 heta) + \dots$$



- The electrostatic moments are
 - Charge $q = q_1 + q_2$

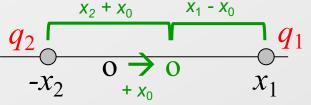
 - $egin{aligned} &- Dipole & \mu = q_2 x_2 q_1 x_1 \ &- Quadrupole & \Theta = q_1 x_1^2 + q_2 x_2^2 \end{aligned}$

Next would be octupole

The first nonzero moment is independent of the origin

• Consider effect of shifting origin

no effect



 $q:q_1+q_2=q$

$$\mu: q_2(x_2+x_0)-q_1(x_1-x_0)=\mu+(q_2+q_1)x_0=\mu$$
 $\Theta: q_2(x_2+x_0)^2+q_1(x_1-x_0)^2$
 $=\Theta+2x_0(q_2x_2-q_1x_1)+x_0^2(q_2+q_1)=\Theta$
 $\mu=0$

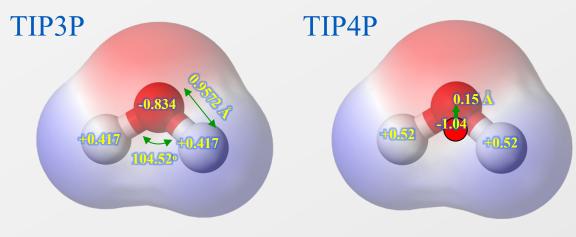
11

More generally, the multipole moments are tensorial quantities

- Charge is a rank-0 tensor (scalar): $q = \sum_{i} q_i$
- Dipole moment is a rank-1 tensor (vector): $\boldsymbol{\mu} = \sum_{i} q_i \mathbf{r}_i$ $\boldsymbol{\mu} = (\sum_{i} q_i x_i \sum_{i} q_i y_i \sum_{i} q_i z_i)$ Quadrupole moment is a rank-2 tensor: $\boldsymbol{\Theta} = \sum_{i} q_i \mathbf{r}_i \mathbf{r}_i$

$$oldsymbol{\Theta} = egin{pmatrix} \sum_i q_i x_i^2 & \sum_i q_i x_i y_i & \sum_i q_i x_i z_i \ \sum_i q_i y_i x_i & \sum_i q_i y_i^2 & \sum_i q_i y_i z_i \ \sum_i q_i z_i x_i & \sum_i q_i z_i y_i & \sum_i q_i z_i^2 \end{pmatrix}^{i} egin{pmatrix} A ext{ traceless version is often preferred; also may diagonalize} \ & = rac{3}{2} egin{pmatrix} \sum_i q_i z_i x_i & \sum_i q_i x_i z_i \ \sum_i q_i z_i y_i & \sum_i q_i z_i^2 \end{pmatrix}^{i} egin{pmatrix} A ext{ traceless version is often preferred; also may diagonalize} \ & = rac{3}{2} egin{pmatrix} \sum_i q_i z_i x_i & \sum_i q_i x_i z_i \ \sum_i q_i z_i x_i & \sum_i q_i z_i^2 \end{pmatrix}^{i} egin{pmatrix} A ext{ traceless version is often preferred; also may diagonalize} \ & = rac{3}{2} egin{pmatrix} \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i x_i z_i \ \sum_i q_i z_i x_i & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i y_i z_i \ \sum_i q_i z_i x_i & \sum_i q_i (z_i^2 - rac{1}{3} r_i^2) \end{pmatrix}^{i} egin{pmatrix} A ext{ traceless version is often preferred; also may diagonalize} \ & = rac{3}{2} egin{pmatrix} \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i x_i z_i \ \sum_i q_i z_i x_i & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (z_i^2 - rac{1}{3} r_i^2) \end{pmatrix} egin{pmatrix} A ext{ traceless version is often preferred; also may diagonalize} \ & = rac{3}{2} egin{pmatrix} \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i x_i z_i \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) \ & \sum_i q_i (x_i^2 - rac{1}{3} r_i^2) & \sum_i q_i (x_i^2 -$$

Let's practice by computing the dipole and quadrupole moments of the TIPxP models



 $oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu} = egin{pmatrix} \sum_i q_i x_i & \sum_i q_i y_i & \sum_i q_i z_i \end{pmatrix} \ oldsymbol{\Theta} = egin{pmatrix} \sum_i q_i x_i^2 & \sum_i q_i x_i y_i & \sum_i q_i x_i z_i \ \sum_i q_i z_i x_i & \sum_i q_i z_i y_i & \sum_i q_i z_i^2 \end{pmatrix} \end{pmatrix}$

Use origin on oxygen atom 1 Coulomb-Å = 2.9979×10^{19} Debye (D) 1 Buckingham = 1 D-Å $e = 1.602 \times 10^{-19}$ Coulombs

Suggested Reading/Viewing

- Frank Jensen, Introduction to Computational Chemistry, 3rd ed., Wiley (2017). Chapter 2. Available online via UB library:
 - <u>https://search.lib.buffalo.edu/permalink/01SUNY_BUF/9qhqtp/</u> <u>alma9939265811804803</u>
- C.G. Gray and K.E. Gubbins, *Theory of Molecular Fluids*, Vol. 1: Fundamentals (1984).
 - Detailed, comprehensive discussion of molecular electrostatics
 - Not required reading. Recommended for anyone needed to look at the topic in more detail.