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Review

O Intermolecular forces arise from quantum mechanics
* too complex to include in lengthy simulations of bulk phases
O Empirical forms give simple formulas to approximate
behavior
* intramolecular forms: bend, stretch, torsion

* intermolecular: van der Waals, electrostatics, polarization

O Unlike-atom interactions weak link in quantitative work




Truncating the Potential

O Bulk system modeled via "
. X L . ese two are same
pGI'IOdlC b()undary C()ndltlon distance from central

atom, yet:
* not feasible to include Black atom inferacts

interactions with all images ~ Green atom does not

* must truncate potential at half the
box length (at most) to have all
separations treated consistently

These two are

O Contributions from distant \4 e o
separations may be important central atom

Only interactions
considered




Truncating the Potential

O Potential truncation introduces discontinuity
* Corresponds to an infinite force

* Problematic for MD simulations

ruins energy conservation

O Shifted potentials

*  Removes infinite force

 Still discontinuity in force

0. (r) = {u(r) —u(r,) r<r,

0 r>r.

O Shifted-force potentials "
*  Routinely used in MD () = {u(r) —u(r,)— E(F -r) rsr,

0 r>r.,

O For quantitative work need to re-introduce long-range
interactions




Truncating the Potential

O Lennard-Jones example

* r,=2.50
du
u(r)—u(r,) r<r, u(r)—u(r.)——(r-r) r<r,
u()=1" tyy (1) = dr
r>r 0 r>r.
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Radial Distribution Function

O Radial distribution function, g(r)

* key quantity in statistical mechanics
4 — Hard-sphere g(r)

Low density

High density

* quantifies correlation between atom pairs

O Definition
Number of atoms at

d — rinactual system 7]
_ pr)dr

T i . -
\\ O

Number of atoms at

r for ideal gas
id N C
P (r)dr =—dr
V
< O

O Here’s an applet that computes g(r)




Radial Distribution Function. Java Code

public class MeterRDF extends MeterFunction

/**

* Computes RDF for the current configuration
*/

public double[] currentValue() ({

iterator.reset();
for (int i=0; i<nPoints; i++) {y[i] =

//prepare iterator of atom pairs

0.0;} //zero histogram
//loop over all pairs in phase

while (iterator.hasNext()) {
double r = Math.sqgrt(iterator.next().r2()); //get pair separation
if(r < xMax) {
int index = (int) (r/delr); //determine histogram index

y[index]+=2; //add once for each atom

}

}
//compute normalization: divide by

int n = phase.atomCount() ;
double norm = n*n/phase.volume () ;
for (int i=0; i<nPoints; i++) {y[i] /= (norm*vShell[i]) ;}

return y;

//n, and density* (volume of shell)




Simple Long-Range Correction

O Approximate distant interactions by assuming uniform
distribution beyond cutoff: g(r)=1r>r1_,

O Corrections to thermodynamic properties

* Internal energy Expression for Lennard-Jones model
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* Chemical potem‘zal

Forr,/o =2.5, these are about
5-10% of the total values
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Coulombic Long-Range Correction

O Coulombic interactions must be treated
specially
* very long range
* 1/r form does not die off as quickly as
volume grows

J.l47[r2dr = oo
o

C

* finite only because + and — contributions -

cancel

O Methods

* Full lattice sum

Here is an applet demonstrating direct approach

Ewald sum

* Treat surroundings as dielectric
continuum
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O Consider periodic function on -

L/2,+L/2

O A Fourier series provides an
equivalent representation of the

function

f(x)= %ao + i(an cosnx+b, sin nx)

O The coefficients are v

ay

b,

n=1

+L/2

-L/2
+L/2

Aside: Fourier Series

£(x)

[ One period )

2 | f(x)cos(rnx/ L)dx ~L/2

2 j £ (x)sin(2znx/ L)dx

-L/2

|
+1L/2
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Fourier Series Example

O f(x) is a square wave

f(x)

+L/2

2 | f(x)cos(2mnx/ Lydx , ,
~L/2 X
0 +L/2
j cos(ZEnx/L)dx—% J. cos(2znx/ L)dx =0

-L/2 0
+L/2

2 | f(x)sin@anx/ L)dx
-L/2

{4 n odd

—Jnrw

0 neven

2
L
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Fourier Series Example

| [\
O f(x) is a square wave
n=1
f(x)

+L/2
:% J f(x)cos(2rnx/ L)dx I \/ I | \/

—L/2 X

0 +L/2

:% J. cos(2znx/ L)dx—% J. cos(2zznx/ L)dx =0

—L/2 0

+L/2
=1 [ f(x)sin@2znx/ L)dx

—-L/2

{4 n odd
—Jnrw

0 neven
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Fourier Series Example

| AN
O f(x) is a square wave N

n=1,3

£(x)

ANIVA

/\ VA

+L/2 \/ \/ \/

L | f(x)cosanx/ Lydx . . |
~L/2 X
0 +L/2

% J. cos(ZEnx/L)dx—% J. cos(2znx/ L)dx =0

~L/2 0

+L/2

L fx)sin@znx/ L)dx
—-L/2

4
—Jnx
0

n odd

n cven
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Fourier Series Example

_ N N
O f(x) is a square wave VoY VoY
n=1,3,5
f(x)

+L/2 \/\uf\J &/\v/\d
=1 [ f(x)cos(2mnx/Lydx , . .

—L/2 X

0 +L/2

:% J. cos(ZEnx/L)dx—% J. cos(2zznx/ L)dx =0

—L/2 0

+L/2
=1 [ f(x)sin@2znx/ L)dx

—-L/2

{4 n odd
—Jnrw

0 neven
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Fourier Series Example

| A oo N o)
O f(x) is a square wave v Y
| |
n=1,3,5,7
f(x)
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Fourier Representation

O The set of Fourier-space coefficients b_ contain complete
information about the function S () =Ja,+ 3 (4, cosnx+ b, sinnx)

O Although f(x) is periodic to infinity, b, is non-negligible over
only a finite range

O Sometimes the Fourier representation is more convenient to use
1.2
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Convergence of Fourier Sum

O If f(x) = sin(2wkx/L), transform is simple

b, =1forn=k

* b, = 0 otherwise

Converges very quickly!

1.0 7

0.8 —
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0.2 —

0.0 —
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Observations on Fourier Sum

O Smooth functions f(x) require few coefficients b

O Sharp functions (square wave) require more coefficients

O Large-n coefficients describe high-frequency behavior of f(x)
* large n = short wavelength

O Small-n coefficients describe low-frequency behavior
* small n = long wavelength

* e.g., n =0 coefficient is simple average of f(x)
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Fourier Transform

O As L increases, f(x) becomes less periodic
O Fourier transform arrives in limit of L = oo
O Compact form obtained with exponential form of cos/sin

% = cos@+isind

oo Yoo
S(x)= %ao + Z(an 00527’% +b _sin 2”%) Inverse  f(x)= f f(k)e—zﬂﬂofdk

n=1

+L/2 )
a =1 | f(x)cos(2znx/L)dx . e .
T J i forward — f(k)= | f(x)e*™ dx
+L/2 —oo
by = % I S (x)sin@rnx/ Lydx_ a, = real part of transform

—L/2

O Useful relations
+ derivative | /") |(k) = (=2ik)" F (k)
© convolution | [ f(t)g(x—t)dt |(k) = J(k)g(k)

b, = imaginary part
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Fourier Transform Example

O Gaussian
(04 x2
JI=5 P {_“7} (x)

QO Transform is also a Gaussian!

O Width of transform i1s reciprocal of
width of function F(k)

. 1174 . V4
* k-space is “reciprocal " space

* sharp f(x) requires more values of
F(k) for good representation | | | | |

* O(x-x,) transforms into a sine/cosine k
wave of frequency x,: (k) = &>
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Fourier Transform Relevance

O Many features of statistical-mechanical systems are
described 1n k-space

° Structure
° transport behavior
« electrostatics

O This description focuses on the correlations shown over a
particular length scale (depending on k)

O Macroscopic observables are recovered in the k = 0 limit

O Corresponding treatment is applied in the time/frequency
domains




23

Review of Basic Electrostatics

O Force between charges F=992¢
= >

O In terms of electric field  F(r)=qE®)
O Static electric field satisfies

V-E(r) =47p(r)
VXE([r)=0

O Charge density p(r)
* for point charge q,: p(r)=g,0(r)
O Electrostatic potential

 zero curl implies E can be written E(r)=-Vé(r)

* potential energy of charge q, at r, relative to position at infinity

u(r) =g p(r)

O Poisson’s equation
. V2¢=—47zp

Mass analogy: u(z) = m x gz = m¢(z)




Ewald Sum

O We want to sum the interaction energy of each charge in the
central volume with all images of the other charges

° express in terms of electostatic potential

e e e e e
U,;=1 Y g0 % e¥ efy ef, e
1Cr£1 a?:regnetrial @ Q‘ ® Q‘ ® Q‘ ® Q‘ g Q‘
volume Q‘Q Q’Q Q’Q Q‘Q Q‘Q

e & _&_ & _ &

* the chqrg? density creating the Q’QQ Q’QQ ee. Q‘QQ Q’QQ
potential is 2222 ®
" Ca ©a 6o 6. ©
pm)= > > q,6(r—r;) QQ: QQ: QQ: Q‘: Q‘:
n,intqagejinn .Q .Q‘.Q’.Q‘.Q‘
vectors ‘
e®e % e % e®
=X X 4,8(r~(r; +ni) $°90°0°0°%°0°
n o j

* this is a periodic function (of period L), but it is very sharp

Fourier representation would never converge
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Ewald Sum: Fourier 1.

O Compute field instead by smearing all the charges

I e

2

include n=0 Large a takes p back

to O function

O Electrostatic potential via Poisson equation
* direct space form V*¢(r) =—4np(r)
* reciprocal space k2¢(k) =—4p(k)
O Discrete Fourier transform the charge density

+L/2

-L/2
+L/2

pk)=1 J dre ™ p(r) a,=1 [ f(x)cos(2mnx/L)dx
V

R 1 .
1 ~ikr; _i2/4q b,=1 [ f(x)sinQmnx/L)dx
=y2.ae e
J
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Ewald Sum. Fourier 2.

O Use Poisson’s equation for electrostatic potential
k)=—— p(k
o(k) = 2 ,0( )
O Invert transform to recover real-space potential

_ ik-r >
¢(l‘) - 2 ¢(k)e f(x)= %ao + Z(an cosnx+b, sinnx)

k#0

n=1

_224759’] ik-(r-r;) —k2/4a
k;tO j

* in principle requires sum over infinite number of wave vectors kK

* but reciprocal Gaussian goes to zero quickly if o is small (broad
Gaussian, large smearing of charge)
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Ewald Sum. Fourier 3.

O The clectrostatic energy can now be obtained
* for point charges in potential of smeared charges
U, = %2%’(/5(1}')
i product of
identical sums

] 4V _ik2/40 Zqiqj' iKk-(r;—r;)
== ) ——e¢ e
2 2 2
k=0 i,j 4

DR ) YA
Vk;tO J k2

1O 4V e—k2/4a‘p(k)‘2

_Ek;zf&Ok—2 \

1 —ik-r;
pk) = qu]'e !
J

O Two corrections are needed

* selfinteraction

° correct for smearing
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Ewald Sum. Self Interaction 1.

O In Ewald sum, each point charge is replaced by smeared
Gaussian centered on that charge

* this is done to estimate the electrostatic potential field

- 5 x

O All point charges interact with the resulting field to yield the
potential energy J

* This means that the point charge x
interacts with its smeared

representation
We need to subtract this
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Ewald Sum. Self Interaction 2.

O We work 1n real space to deal with the self term

* Poisson’s equation for the electrostatic potential due to a single
smeared charge

V2¢(r) = —4mp(r) p(r)=q;(a/ % exp [—a‘r ~ rjﬂ
* The solution is . 1a(r2 aj
o) =" erf (Jerr) Zorl or

In particular, atr = 0

#(0)=2q;(cr/ m)""?

The self-correction subtracts this for each charge

Useip =73 2,4,9(0)
J independent of
i~ 2 configuration
=(%) qu
J
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Ewald Sum. Smearing Correction 1.

O We add the correct field and subtract the approximate one to
correct for the smearing

Ag;(r) = g7 (r) - 97 (r) /\ /\
q; q;
r e e n) x
:‘ﬁ];‘e’fc(@\"—“j\) \/ \/

J

O This field is short ranged for large o (narrow Gaussians)

* can view as point charges surrounded by shielding countercharge
distribution




Ewald Sum. Smearing Correction 2.

O Sum interaction of all charges with field correction
* convenient to stay in real space

* Usually atis chosen so that sum converges within central image

AU = %ZZ%A%(’@')

n i#j

— %qu’qj erfc(\/arij)

n i#j rl'j

O Total Coulomb energy
Uc = Uq (0() o Uself(a) + AU(O()

* each term depends on o, but the sum is independent of it

if enough lattice vectors are used in the reciprocal- and real-space sums

O Here is an applet that demonstrate the Ewald method
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Ewald Method. Comments

O Basic form requires an O(N?) calculation
* efficiency can be introduced to reduce to O(N*?)
* good value of ais 5L, but should check for given application

* can be extended to sum point dipoles

O Other methods are in common use

* reaction field
* particle-particle/particle mesh

* fast multipole




Summary

O Contributions from distant interactions cannot be neglected
* potential truncated at no more than half box length

* treat long-range assuming uniform radial distribution function

O Coulombic interactions require explicit summing of images
* too costly to perform direct sum

* Ewald method is more efficient
smear charges to approximate electrostatic field
simple correction for self interaction

real-space correction for smearing
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