Lecture 15 Force Fields

Midterm exam review; intramolecular energy models

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo

© 2024 David Kofke

Force fields represent the PES using simple empirical functions of nuclear coordinates

Also called "molecular mechanics"

- Large computational expense of electronic energy limits time and length scales accessible by first-principles methods
- Force fields can compute the energy very quickly, but more approximately
 - Parameterized using first-principles and/or experimental data
 - Many forms and parameterizations have been proposed
 - Bonding information must be specified a priori
 - Still, force-field models face limits on system size and length of time
 - Millions of atoms and microseconds of time are range that can be attained
 - Most simulations are much smaller and/or shorter

A variety of simplifications are used to trade off accuracy, complexity, and speed

- Pairwise-additive energy
- Rigid molecules
 - fast intramolecular motions slow down MD calculations
- Ignore hydrogen atoms
 - united atom representation
- Ignore polarization
 - expensive *n*-body effect
- Ignore electrostatics

3

- Treat whole molecule as one big atom
 - maybe anisotropic
- Model vdW forces via discontinuous potentials
- Ignore all attraction

 Hard spheres or other shapes
- Model space as a lattice
 - especially useful for polymer molecules

Molecular-mechanics energy is written as a sum of bonded and nonbonded terms

$$E_{\rm MM} = \underbrace{E_{\rm str} + E_{\rm bend} + E_{\rm tors} + E_{\rm cross}}_{\rm bonded} + \underbrace{E_{\rm vdW} + E_{\rm el}}_{\rm non-bonded}$$

4

Transferable potentials depend on functional groups, not entire molecule

- Atom types are defined
 - Elemental identity (C, O, N, etc.)
 - Type of chemical bonds it has
- Force-field parameters are keyed to atom type

Table 2.1 MM2(91) atom types. (partial list)					
Туре	Symbol	Description	Туре	Symbol	Description
1	С	sp ³ -carbon	28	н	Enol or amide
2	С	sp ² -carbon, alkene	48	Н	Ammonium
3	С	sp ² -carbon, carbonyl, imine	36	D	Deuterium
4	С	sp-carbon	20	lp	Lone pair
22	С	sp ³ -carbon, cyclopropane	15	S	Sulfide (R ₂ S)
29	C·	Radical	16	S+	Sulfonium (R_3S^+)
30	C^+	Carbocation	17	S	Sulfoxide (R_2 SO)
38	С	sp ² -carbon, cyclopropene	18	S	Sulfone (R_2SO_2)
50	С	sp ² -carbon, aromatic	42	S	sp ² -sulfur, thiophene
56	С	sp ³ -carbon, cyclobutane	11	F	Fluoride

- This allows force fields to be built for arbitrary molecules
 - In contrast, using bespoke parameters for each molecule would make the whole approach unworkable
- Models will vary in how they define atom types and groups

Bond stretching is usually modeled using a 2-body harmonic potential

• Taylor series about minimum-energy pair separation

$$E_{
m str}(R) = E(0) + E' imes (R-R_0) + rac{1}{2}E'' imes (R-R_0)^2 + \dots \ pprox k(R-R_0)^2$$

- 2 parameters

6

• Morse potential allows dissociation $E_{
m Morse}(R) = D\Big(1-e^{-lpha(R-R_0)^2}\Big)$

CH₄ stretch

Bond bending is usually modeled using a 3-body harmonic potential

• Taylor series about minimumenergy angle

$$E_{
m bend}(heta)=k(heta- heta_0)^2$$

• 2 parameters

CH₄ bend

The 4-body torsion potential uses a Fourier sum to obey the symmetry of the rotation

- New features
 - Rotational barrier from both non-bonded and torsional energy
 - Torsional energy is periodic
 - Rotation energy much lower than stretch/bend
- Fourier form $E_{\mathrm{tors}}(\omega) = \sum_{n=1} V_n \cos(n\omega)$
 - Select *n* consistent with symmetry
 - E.g., only *n* = 3, (6, 9,...) for ethane
 - Typically only *n* = 1, 2, and/or 3 are used

The 4-body torsion potential uses a Fourier sum to obey the symmetry of the rotation

- New features
 - Rotational barrier from both non-bonded and torsional energy
 - Torsional energy is periodic
 - Rotation energy much lower than stretch/bend
- Fourier form $E_{\mathrm{tors}}(\omega) = \sum_{n=1} V_n \cos(n\omega)$
 - Select *n* consistent with symmetry
 - E.g., only *n* = 3, (6, 9,...) for ethane
 - Typically only *n* = 1, 2, and/or 3 are used

Out-of-plane 4-atom bending energy can be treated in several ways

Benzene

- Keeps atoms in or out of plane, as needed
- Improper torsion
 - Defines an artificial torsion angle
 - Not most effective, but popular because it can re-use torsion potential for this purpose
- Geometry-oriented potentials are better

$$E_{
m oop} = k (\chi - \chi_0)^2 \quad {
m or} \quad E_{
m oop} = k (d-d_0)^2$$

Non-bonded interactions apply to atoms that are in same molecule but not near each other

- These have the same general forms as for atoms on different molecules
- Most force fields apply these interactions to atoms separated by three bonds or more
 - Sometimes 1,4 interactions are scaled down by some amount (0.5 1.0)
 - Thus, in A–B–C–D sequence, A and D will interact with both torsion and attenuated non-bonded interactions

11

Suggested Reading/Viewing

- Frank Jensen, Introduction to Computational Chemistry, 3rd ed., Wiley (2017). Chapter 2. Available online via UB library:
 - <u>https://search.lib.buffalo.edu/permalink/01SUNY_BUF/9qhqtp/</u> <u>alma9939265811804803</u>