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Force fields represent the PES using simple

/empirical functions of nuclear coordinates

Also called “molecular mechanics”

» Large computational expense of electronic energy limits time
and length scales accessible by first-principles methods

* Force fields can compute the energy very quickly, but more
approximately
— Parameterized using first-principles and/or experimental data
« Many forms and parameterizations have been proposed
— Bonding information must be specified a priori
— Still, force-field models face limits on system size and length of time

* Millions of atoms and microseconds of time are range that can be attained
* Most simulations are much smaller and/or shorter



A variety of simplifications are used to trade

off accuracy, complexity, and speed

Pairwise-additive energy

Rigid molecules

— fast intramolecular motions slow
down MD calculations

Ignore hydrogen atoms
— united atom representation

Ignore polarization
— expensive n-body effect

Ignore electrostatics

Treat whole molecule as one
big atom

— maybe anisotropic

Model vdW forces via
discontinuous potentials

Ignore all attraction
— Hard spheres or other shapes

Model space as a lattice

— especially useful for polymer
molecules



Molecular-mechanics energy is written as a
sum of bonded and nonbonded terms
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Transferable potentials depend on

functional groups, not entire molecule

. A d f d Table2.1 MM2(91) atom types. (partial |iSt)
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This allows force fields to be built for arbitrary molecules

— In contrast, using bespoke parameters for each molecule would make
the whole approach unworkable

Models will vary in how they define atom types and groups



Bond stretching is usually modeled using a

2-body harmonic potential
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Bond bending is usually modeled using a
3-body harmonic potential
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The 4-body torsion potential uses a Fourier

sum to obey the symmetry of the rotation

« New features

— Rotational barrier from both non-bonded and
torsional energy

— Torsional energy is periodic
— Rotation energy much lower than stretch/bend

e Fourier form Etors E V., cos nw

— Select n consistent with symmetry
« E.g.,onlyn=3,(6,9,...) for ethane
» Typically only n =1, 2, and/or 3 are used
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Out-of-plane 4-atom bending energy can be

treated in several ways

Benzene

» Keeps atoms 1n or out of plane, as needed

* Improper torsion
— Defines an artificial torsion angle

— Not most effective, but popular because it can
re-use torsion potential for this purpose

* Geometry-oriented potentials are better
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Non-bonded interactions apply to atoms that

are in same molecule but not near each other

* These have the same general forms
as for atoms on different molecules

* Most force fields apply these C
interactions to atoms separated by ¢
three bonds or more

— Sometimes 1,4 interactions are scaled
down by some amount (0.5 — 1.0)

— Thus, in A—B—C—-D sequence, A and D
will interact with both torsion and
attenuated non-bonded interactions



Suggested Reading/Viewing

« Frank Jensen, Introduction to Computational Chemistry,
3rd ed., Wiley (2017). Chapter 2.
Available online via UB library:

— https://search.lib.buffalo.edu/permalink/01SUNY_BUF/9ghatp/
alma9939265811804803
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