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Review

O Molecular dynamics is a numerical integration of the
classical equations of motion

O Total energy is strictly conserved, so MD samples the NVE
ensemble

O Dynamical behaviors can be measured by taking appropriate
time averages over the simulation

* Spontaneous fluctuations provide non-equilibrium condition for
measurement of transport in equilibrium MD

* Non-equilibrium MD can be used to get less noisy results, but
requires mechanism to remove energy via heat transfer

O Two equivalent formalisms for EMD measurements
* FLinstein equation

* Green-Kubo relation

time correlation functions




Molecular Dynamics in Other Ensembles

O Standard MD samples the NVE ensemble

O There 1s need enable MD to operate at constant T and/or P

* with standard MD it is very hard to set initial positions and
velocities to give a desired T or P with any accuracy

NPT MD permits control over state conditions of most interest
* NEMD and other advanced methods require temperature control
O Two general approaches
* stochastic coupling to a reservoir

* feedback control

O Good methods ensure proper sampling of the appropriate
ensemble




What 1s Temperature?

O Thermodynamic definition

1 _ oS . Disordered: more ways
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* temperature describes how much more \disordered a system
becomes when a given amount of energy is added to it

high temperature: adding energy opens up few additional microstates
low temperature: adding energy opens up many additional microstates
O Thermal equilibrium
* entropy is maximized for an isolated system at equilibrium
* total entropy of two subsystems is sum of entropy of each: S, , =S, + S,

* consider transfer of energy from one subsystem to another

down, total entropy increases with energy transfer

if entropy of one system goes up more than entropy of other system goes
0) 2

equilibrium established when both rates of change are equal (T,=T,)

— (temperature is guaranteed to increase as energy is added)




Momentum and Configurational Equilibrium

O Momentum and configuration coordinates are
in thermal equilibrium N N
P r
C B, pM)=K(p")+UC")
* momentum and configuration coordinates must be “at same
temperature’” or there will be net energy flux from one to other

O An arbitrary initial condition (pN,rV) is unlikely to have equal
momentum and configurational temperatures

* and once equilibrium is established, energy will fluctuate back
and forth between two forms

* ...50 temperatures will fluctuate too

O Either momentum or configurational coordinates (or both)
may be thermostatted to fix temperature of both

° assuming they are coupled
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An Expression for the Temperature 1.

O Consider a space of two variables %
* schematic representation of phase space Eg
O Contours show lines of constant E i
 standard MD simulation moves along ,
corresponding 3N dimensional \
hypersurface /
X
O Length of contour E relates to Q2(E) \
O While moving along the E, contour, /

we’d like to see how much longer the y,
Eg contour 1s . \J(/ Eg
1 _ VxE Relates to

O Analysis yields = .
y y ET ‘Vx E‘z \/ gradient and

rate of change
of gradient




Momentum Temperature
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Configurational Temperature

O Potential energy U@")

N N

X
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VU
N
> F
— i=1
& (oF, OF,
—2 X4 Butler, B. D., G. Ayton, O. G. Jepps, and
i—1 ar}x al’iy D.J. Evans. 1998. Configurational

temperature: verification of Monte Carlo
simulations. J. Chem. Phys. 109, 6519.




Lennard-Jones
Configurational Temperature

O Spherically-symmetric, pairwise additive model

N SV (5P
U(rN)=ZZug(r,-j) “LJ(”)=45|:[F) —(r):|

i=1 j<i
O Force F :_zﬁd”‘ij rduy, _ 48¢|(o “ 1o
l — = J— —_ ] —
i lij drij r dr o’ |\ r 2\ r

O Laplacian

2
aFiaz_E Tiee 0 [ 1 duy | 1 duy 1d(lduy,\_ 672¢|(0 16_% o 10
U | Ty O\ 1y dry | 1y dry rdr\r dr ot lr) 7lr

N.B. Formulas not verified
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Thermostats

O All NPT MD methods thermostat the momentum temperature

O Proper sampling of the canonical ensemble requires that the
momentum temperature fluctuates

N 2
* momentum temperature is proportional to total kT = : zp,- 2 K

kinetic energy Nd

* energy should fluctuate between K and U
* variance of momentum-temperature fluctuation pN <::(f‘> N

can be derived from Maxwell-Boltzmann

fluctuations vanish at large N U%D 2

rigidly fixing K affects fluctuation quantities, <Tp>2 IN
but may not matter much to other averages

O All thermostats introduce unphysical features to the dynamics

* EMD transport measurements best done with no thermostat

use thermostat equilibrate r and p temperatures to desired value, then remove




Isokinetic Thermostatting 1.

O Force momentum temperature to remain constant
O One (bad) approach

* at each time step scale momenta to force K to desired value

advance positions and momenta
apply p"" = Ap with A chosen to satisfy Z

AP _ NakT

repeat

* “equations of motion” are irreversible
“transition probabilities” cannot satisfy detailed balance

* does not sample any well-defined ensemble
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Isokinetic Thermostatting 2.

O One (good) approach
*  modify equations of motion to satisfy constraint

I=p,/m

p,=F —Ap

l

« Ais a friction term selected to force constant momentum-temperature
N 2

K = Pi
= 2m
i=1

d_Kzipi P,

dt “~ m

1
zgl—"-(Fi—/lp,-)EO — - 4= Z,?.pi -
oM Emipi Pi
O Time-reversible equations of motion
*  no momentum-temperature fluctuations
* configurations properly sample NVT ensemble (with fluctuations)

* temperature is not specified in equations of motion!
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Thermostatting via Wall Collisions

O Wall collision imparts random velocity to molecule

* selection consistent with (canonical-ensemble)
Maxwell-Boltzmann distribution at desired temperature

Gaussian

7(p) = 1 exp| — v’
(27mkT )d/2 2mkT random p

O Advantages

* realistic model of actual process of heat transfer

A_nnnminvhnnaanaaawaaewwy

@

* correctly samples canonical ensemble

VAV\MNhanhanaawa\e

O Disadvantages
Wall can be

made as
* wall may give rise to unacceptable finite-size effects  realistic as

* can’t use periodic boundaries

not a problem if desiring to simulate a system in confined space desired

* not well suited for soft potentials
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Andersen Thermostat

O Wall thermostat without the wall

O Each molecule undergoes impulsive “collisions” l'
with a heat bath at random intervals / f

random p

O Collision frequency v describes strength of coupling
*  Probability of collision over time dt is vdt

. . . -Vt
* Poisson process governs collisions P(t;v)=ve

O Simulation becomes a Markov process
« I =(VA) Ty + (1= VAOI ypp
* Iz 1s a “deterministic” TPM
it is not ergodic for NVT, but I1 is

O Click here to see the Andersen thermostat in action




Nosé Thermostat 1.

O Modification of equations of motion
* like isokinetic algorithm (differential feedback control)
*  but permits fluctuations in the momentum temperature
* integral feedback control

O Extended Lagrangian equations of motion

* introduce a new degree of freedom, s, representing reservoir

* associate kinetic and potential energy with s U =—gkTlns
N .2
m.(s¥,) _ S
LNose=2%—U(rN)+%sz—ng1ns KS:%QS
i=1 N\
° momenta oL 5. effective
P; =5, =S T mass
I
oL
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Nos¢é Thermostat 2.

O Extended-system Hamiltonian is conserved
N 2 2
P; Ny, P
H, = = +U(@" )+ =+ gkT Ins
Nose ; 2mi52 2Q

O Thus the probability distribution can be written

N N
7[(1' P 9S9ps)=5(HNose_E)

O What does this mean for the sampling of coordinates and
momenta? How does this ensure a canonical distribution?

17




p=L
S

Nos¢é Thermostat 3.
o(s—s,)

_ [ N 3N _ T\ %)
0. =~ [ dp, dsdp"dr"6(H, ~ E) V)=

2

’2
=— (dp dsdp”™dr"s*V§ P v+t ok TIns— E
| dp, dsdp 22’% (r)+55+8

O Get canonical ensemble for s, p' if g = 3(N+1)
O s can be interpreted as a time-scaling factor
- At,,.=At; /s
s varies during simulation, so “true” time step is of varying length
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p=L
S

Nos¢é Thermostat 3.

_E) 5[ h(s)]= 28— %)

N N
dp dsdp”dr"o(H i (s,)

N' Nosé
_ g
L

3N+1 2
=Lj.dp dsa’p'NdrNS S| s—exp L Hp" ")+ b _ g
N1 kT okT 20

4

QNosé =

72 2
dp dsdp’¥dr"sVS| S 2 L+ Bt ok TIns - E
p_dsdp’” dr"s {22’% (") 2ot ek Ins

1 1 zowm o +1
S—— jdpe 2gpVdr" exp| — SN+
gkT

/N _ N
P H(p"x ))

3(N+1)
gkT

_ T !N N _ /N __N
—CN!Jdp dr exp( Hp" r )]

O Get canonical ensemble for s, p' if g = 3(N+1)

O s can be interpreted as a time-scaling factor
© At = AL, /S

° svaries durmg simulation, so “true’ time step is of varying length




HNO

N 2 2

_ P, N p_
=2, i +U(r )+2SQ+ng1ns

i=1 2m.s

Nosé-Hoover Thermostat 1.

O Advantageous to work with non-fluctuating time step .,

O Scaled-variables equations of
motion

* constant simulation At
* fluctuating real At

. oH  p, ‘”': ‘i
i_ap -~ 9 e
i ml.S p
0H "
p.=——=F. :%
|/ arl 1
. _0H p,
f§=——=—
dp, O

equation of motion

N
a(sps/Q):1£2Pi_ng

ot 0,

i=1 M
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r=r
p'=p/s
s’=s
=At/s

O Real-variables (' removed)

J




Nosé-Hoover Thermostat 2.

O Real-variable equations are of the form

- = Pi
I = -
i
P; = Fi - épz
S _ =¢ (redundant; s is not present in other equations)
s

1 [ X D;
=Y S gkT
Q[gl‘mi ¢ ]
O Compare to isokinetic equations

l"l.=pl./m Z pz
p.=F,—Ap Z PP

O Difference is in the treatment of the friction coefficient

* Nosé-Hoover correctly samples NVT ensemble for both momentum and
configurations; isokinetic does NVT properly only for configurations
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Nosé-Hoover Thermostat 3.

O Equations of motion
P
I'l- =

m

=F,-&p,

¢

N
— é[ZZ—ng]
i=1"""

O Integration schemes

o;lra"c

* predictor-corrector algorithm is straightforward

* Verlet algorithm is feasible, but tricky to implement
t-dt t t+dt

—

F /

At this step, update of &
depends on p; update of p
depends on &

pi =Fl' _épi

e
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Barostats

O Approaches similar to that seen in thermostats
* constraint methods
* stochastic coupling to a pressure bath
* extended Lagrangian equations of motion

O Instantaneous virial takes the role of the momentum
temperature

P pVy=

NKT,(p") 1
+
v

2 ’7;]]71]>

pairs 1,]

O Scaling of the system volume is performed to control
pressure

O Example: Equations of motion for constraint method

- =p /m+yaV pV
fi=p; /et g (e.p)r X(1) is set to ensure dP/dt = ()

pi = F,' - X(rNapN)p
V=3V xx",p")




Summary

O Standard MD simulations are performed in the NVE ensemble

* initial momenta can be set to desired temperature, but very hard to
set configuration to have same temperature

* momentum and configuration coordinates go into thermal
equilibrium at temperature that is hard to predict

O Need ability to thermostat MD simulations
* aid initialization
* required to do NEMD simulations
O Desirable to have thermostat generate canonical ensemble

O Several approaches are possible
* stochastic coupling with temperature bath
* constraint methods

* more rigorous extended Lagrangian techniques

O Barostats and other constraints can be imposed in similar ways
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