#### Lecture 13 Basis Sets

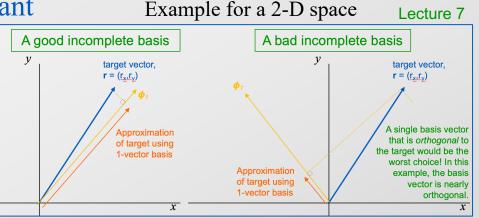
#### Atom-centered basis functions; plane-wave basis functions

Prof. David A. Kofke CE 500 – Modeling Potential-Energy Surfaces Department of Chemical & Biological Engineering University at Buffalo



© 2024 David Kofke

#### 1-electron wavefunctions form the foundation for all electronic-structure calculations


- 1-electron wavefunction  $\rightarrow$  "molecular orbital"
- Molecular orbitals are written as a linear combination of basis functions, the "basis set"
  - Molecular orbitals combined anti-symmetrically to form wavefunction
- Basis sets are developed and optimized for individual atoms, and combined across atoms to form the orbitals for a molecule
  - Basis functions are atomic orbitals
  - Separate into radial and spherical-harmonic parts

$$\phi_{n\ell m A}(r_A, heta_A,\phi_A)=f_n(r_A)Y_\ell^m( heta_A,\phi_A)$$

а

#### In principle, the use of a basis set to represent a wavefunction is not an approximation

- If the basis set is *complete*, it can represent the wavefunction without adding any error (beyond that in the theory, e.g., HF)
- A complete basis set requires an infinite number of functions
  - So in practice, the use of a basis introduces approximation
  - Selection of basis set is important
  - Basis set specifies where electrons can and cannot be



# Several desirable features of a basis set can be identified. Different sets prioritize these differently

- Reflect the nature of the problem
  - Good accuracy with a minimal set
- Able to generate a complete basis set,
  - Well-defined basis set limit can be obtained
- Available in several hierarchical levels
  - each level provides a well-defined accuracy
  - hierarchy systematically converges the result towards the basis set limit.
    - Ideally the basis set convergence should be monotonic and fast
- As computationally efficient as possible
- Universal

4

- Suitable for different methods (HF, DFT,...) and properties (energy, geometry, electrostatics,...)
- Available for all atoms, or at least a large fraction of the periodic table

# A natural choice for basis functions starts from the 1-electron atomic orbitals

Orbital

1.0

0.8

0.6

0.4

0.2

Lecture 7

5

• Slater-type orbitals (STO)

 $\chi_{\mu}({f r})=R^{
m STO}_{\mu}(r)Y^m_l( heta,\phi)$ 

 $R^{
m STO}_{\mu}(r) \propto r^{n-1} e^{-\zeta_{\mu} |{f r}-{f R}_{\mu}|}$  atom center

- Radial component is nodeless
  - Nodes complicate HF calculation
  - STO orbitals are not orthogonal
- Combinations of STO orbitals can mimic true atomic orbitals

Compare to H atomic orbital

$$R_{n,\ell}(r) = r^\ell P_{n,\ell}(r) e^{-(Z/na)r}$$

- Hydrogen 2s
- STO, n=1, *ζ*=0.95
- STO, n=2, ζ=0.4
- Combination

polynomial of degree n-l-1

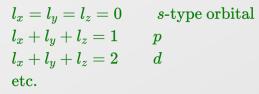
## Evaluation of 3- and 4-center cannot be done analytically with STO orbitals

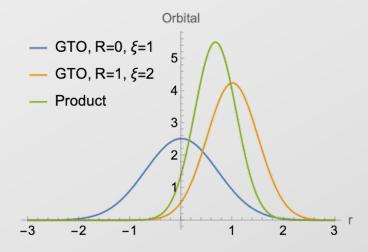
- Here is the 2-electron Coulomb integral  $[11|22] = \int \varphi_1^*(\tau_1)\varphi_1(\tau_1) \frac{1}{r_{1,2}} \varphi_2^*(\tau_2)\varphi_2(\tau_2) d\tau_1 d\tau_2$
- If the molecule has at least 3 atoms, we'll have an integral like this (for example)

$$\int e^{-\zeta_1 ig((x_1-x_A)^2+(y_1-y_A)^2ig)^{1/2}} e^{-\zeta_2 ig((x_1-x_B)^2+(y_1-y_B)^2ig)^{1/2}} e^{-\zeta_2 ig((x_1-x_B)^2+(y_1-y_B)^2ig)^{1/2}}$$

$$imes e^{-\zeta_2 ig((x_2-x_B)^2+(y_2-y_B)^2ig)^{1/2}} e^{-\zeta_3 ig((x_2-x_C)^2+(y_2-y_C)^2ig)^{1/2}}$$

$$imes ig((x_1-x_2)^2+(y_1-y_2)^2ig)^{-1/2}dx_1dy_1dx_2dy_2$$


6

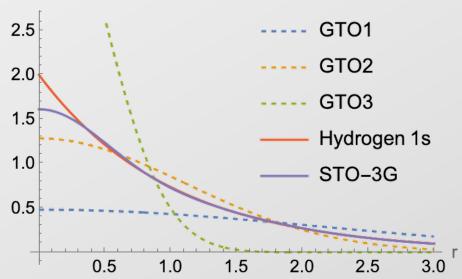

*z* coordinate omitted for simplicity of example

#### Gaussian-type orbitals (GTO) have advantages and are most-often used now

$$\chi_{\zeta,l_x,l_y,l_z}(x,y,z) \propto x^{l_x}y^{l_y}z^{l_z}e^{-\zeta(x^2+y^2+z^2)}$$

- Products of Gaussians with different centers are still Gaussians, at a new center
  - 4- or 3-center integrals become 2-center integrals
- Almost always centered at nucleus, but sometimes put elsewhere
  - Center of a bond, or between nonbonded atoms to improve vdW interactions






Electrons can go only where basis set allows them to be

#### Gaussians have the wrong shape at the origin. *Contracted sets* are used to mimic STO

Lecture 7

- They also decay too fast for  $r \rightarrow \infty$
- Several Gaussians added in a fixed way define a new basis function
   Orbital
- These are called contracted basis functions



#### Contracted orbitals add to the computation, but not as much as adding a basis function

• More integrals to evaluate, but size of Fock matrix unaffected

atracted beals functions

$$\begin{aligned} [11|22] &= \int (\varphi_{1a}(1) + \varphi_{1b}(1))^{*}(\varphi_{1a}(1) + \varphi_{1b}(1))\varphi_{2}^{*}(2)\varphi_{2}(2)\frac{1}{r_{12}}d1d2 \\ &= \int \varphi_{1a}^{*}(1)\varphi_{1a}(1)\varphi_{2}^{*}(2)\varphi_{2}(2)\frac{1}{r_{12}}d1d2 \\ equal, for real basis \\ &= \int \varphi_{1a}^{*}(1)\varphi_{1b}(1)\varphi_{2}^{*}(2)\varphi_{2}(2)\frac{1}{r_{12}}d1d2 \\ &= \Phi(1, 2, \dots, N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_{1a}(1) & \varphi_{2}(1) & \cdots & \varphi_{N}(1) \\ \varphi_{1}(1) & \varphi_{2}(1) & \cdots & \varphi_{N}(1) \\ &= \int \varphi_{1b}^{*}(1)\varphi_{1b}(1)\varphi_{2}^{*}(2)\varphi_{2}(2)\frac{1}{r_{12}}d1d2 \\ &= \int \varphi_{1b}^{*}(1)\varphi_{1b}(1)\varphi_{2}^{*}(1)\varphi_{2}(2)\varphi_{2}(2)\frac{1}{r_{12}}d1d2 \\ &= \int \varphi_{1b}^{*}(1)\varphi_{1b}(1)\varphi_{2}^{*}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi_{2}(1)\varphi$$

- Segmented sets vary number of primitives: (10s4p1d/4s1p) → [3s2p1d/2s1p] Non-H / H atoms e.g., 6,3,1
- The added cost is more than offset by the ease of evaluation of multi-center Gaussian integrals

## Nevertheless, STO basis functions are still used in some circumstances

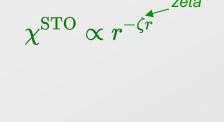
- Atomic and diatomic systems
- Semi-empirical methods, which introduce approximations that eliminate four-center integrals

- E.g., "neglect of diatomic differential overlap", NDDO

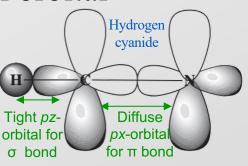
• DFT, when classical Coulomb energy is evaluated using fit of density function

$$J[
ho]=rac{1}{2}\int\intrac{
ho(\mathbf{r}_1)
ho(\mathbf{r}_2)}{|\mathbf{r}_1-\mathbf{r}_2|}d\mathbf{r}_1d\mathbf{r}_2 \qquad rac{1}{2}\sum_i^Nig\langlearphi_i|\intrac{
ho(\mathbf{r})}{|r_i-r'|}dr'|arphi_iig
angle$$

- and exchange functional replaces exchange integral


## The *zeta* classification specifies the size of the basis set

- Minimal basis set is single-zeta (SZ)
  - Number of basis functions enough to provide only the necessary number of occupied orbitals
  - Typically N/2 functions for N electrons
    - E.g., one 1s function for  $H_2$  or He

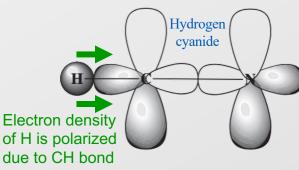



- E.g., 1s and 1s' for  $H_2$  or He, differing in value of  $\zeta$
- Allows differential bonding with different atoms
- Valence and core orbitals may be different zeta
  - Split valence basis set

11



Triple zeta (TZ), Quadruple zeta (QZ), 5Z, 6Z also seen




# Polarization functions are added to enable asymmetry that results from bonds

- A (spherical) *s* valence orbital does not describe well the polarization that accompanies a bond
  - Adding a *p* orbital can help
  - Likewise, adding d orbital to p, or f to d
- Polarization functions are particularly due important in allowing correlation (post-HF)
  - Give electrons a way to avoid each other
  - Adding p, d, f gives angular freedom (e.g., opposite sides of nucleus)

*"DZP"* – double-zeta plus polarization

- Giving same angular momentum with different  $\zeta$  gives radial freedom
- <sup>12</sup> Angular momentum convergence is slower than radial



Basis-set *balance* means to not overdo it. Excessive large- $\ell$  basis fns can cause artifacts

## Augmented basis sets introduce basis functions that focus on a specific property

- Usually basis sets are constructed for energy minimization
- Some properties depend on parts of wavefunction that do not contribute as much to the energy
  - E.g., more diffuse (low  $\zeta$ ) functions added for properties that are sensitive to the tail of the wavefunction (away from nucleus)
  - Polarizability is an example of such a property

## Standard basis sets serve the purpose for most applications

- Don't try to design your own basis set
- Standard sets from websites or included in software

| All roles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Exchange                       | Download GitHub Feedback About Help - Request a Basis set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2ZaPa-NR<br>2ZaPa-NR-CV<br>3-216<br>3ZaPa-NR<br>3ZaPa-NR-CV<br>4-316<br>4ZaPa-NR-CV<br>5-216<br>5ZaPa-NR<br>5ZaPa-NR-CV<br>6-217<br>6-31++G<br>6-31++G*<br>6-31++G*<br>6-31++G*<br>6-31++G*<br>6-31++G*<br>6-31++G*<br>6-31++G*<br>6-31++G<br>6-31++G<br>6-31++G<br>6-31++G<br>6-31++G<br>6-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31++G<br>8-31 | Need to<br>interpret<br>all this | H         Sr         C         N         N         Sr         Sr         C         N         N         Sr         Sr | Viscol         Selection           F         1           F         1           O         1           T         1           D         Xe           S         Kr           S         Ke           M         Ra           At         0g           T         0g           T         0g           Yb         Lat           No         Lr | https://www.basissetexchange.org/         1       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       7         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </th |
| References for s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | elected basis<br>References      | Download basis set       Format       NWChem       Get Basis Set       Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                     | 1         52         52         59         60         pm         52         52         44         45         59         67         98         pm         70           1         89         90         91         92         93         94         94         55         66         67         98         pm         70           1         89         90         91         92         93         94         95         56         67         98         97         70           4         89         90         93         94         95         56         68         79         99         100         101         102           4         82         94         94         57         56         87         99         100         101         102                                                                                                                                                                                                                                     |

#### **Pople-style basis sets**

- STO-*n*G: Slater-type orbitals, formed from *n* primitive GTOs
  - Single zeta, with GTO exponents part of fit to the STO
  - n > 3 is not considered worthwhile
  - E.g., carbon STO-3G:  $(6s3p) \rightarrow [2s1p]$
- *k-nlm*G: split valence
  - k: PGTOs in core orbitals

Addition of diffuse functions, e.g., 6-31++G+  $\rightarrow$  diffuse s,p functions added on non-H ++  $\rightarrow$  also diffuse s function added on H

Addition of polarization, e.g., 6-31+G(2df,2pd)2 d-type and 1 f-type polarization on non-H atoms 2 p and 1 f on H atoms 6-311++G(3df,3pd) is largest Pople-style basis set  $6-31G^* \rightarrow 6-31G(d)$ , and  $6-31G^{**} \rightarrow 6-31G(d,p)$ 

- *nlm*: number and split of PGTOs in valence  $e^{6-31G^* \rightarrow 6-31G(d)}$ , and  $6-31G^{**} \rightarrow 6-31G(d,p)$
- 3-21G: core contracts 3 PGTOs, inner valence 2 PGTOs, outer, 1 PGTO
  - 6-31G has same number of contracted basis functions, but more PGTOs
- 6-311G: core 6 PGTOs, 3 valence functions from 3,1,1 PGTOs, resp.
- •5 Observed method/basis error cancellation, e.g. B3LYP/6-31G\*

# A variety of named basis sets have been developed

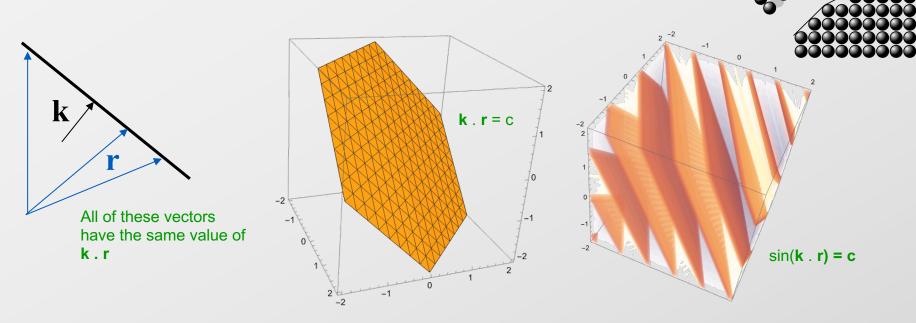
- Dunning-Huzinaga
- Karlsruhe
- Atomic Natural Orbital (ANO)

- Correlation consistent (cc)
  - Add functions consistent with how they lower the energy (by accounting for correlation)
  - E.g., cc-pVDZ → correlation consistent polarized Valence Double Zeta

F. Jensen

|  | Augmentation by diffuse functions indicated by <i>aug</i> prefix |                                          | Table 5.3 Composition in terms of contracted and primitive basis functions for the correlation consistent basis sets. |                       |                                                          |                                   |                                                          |                                     |  |  |  |
|--|------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-------------------------------------|--|--|--|
|  |                                                                  |                                          | Hydrogen                                                                                                              |                       | Second row elements                                      |                                   | Third row elements                                       |                                     |  |  |  |
|  | $\rightarrow$ 1 extra function for each                          | Basis                                    | Contracted                                                                                                            | Primitive             | Contracted                                               | Primitive                         | Contracted                                               | Primitive                           |  |  |  |
|  | angular momentum (spdf) present                                  | cc-pVDZ                                  | 2s1p                                                                                                                  | 4s                    | 3s2p1d                                                   | 9s4p                              | 4s3p2d                                                   | 12s8p                               |  |  |  |
|  | C indicates an added tight core function, e.g. cc-pCVDZ          | cc-pVTZ<br>cc-pVQZ<br>cc-pV5Z<br>cc-pV6Z | 3s2p1d<br>4s3p2d1f<br>5s4p3d2f1g<br>6s5p4d3f2g1h                                                                      | 5s<br>6s<br>8s<br>10s | 4s3p2d1f<br>5s4p3d2f1g<br>6s5p4d3f2g1h<br>7s6p5d4f3g2h1i | 10s5p<br>12s6p<br>14s8p<br>16s10p | 5s4p3d1f<br>6s5p4d2f1g<br>7s6p5d3f2g1h<br>8s7p6d4f3g2h1i | 15s9p<br>16s11p<br>20s12p<br>21s14p |  |  |  |

# Plane waves form a completely different class of basis functions


- Extended systems (e.g., crystals) suggest use of functions with "infinite" range
- Valence electrons of metals are like free electrons (PiaB), so their wavefunction provides a natural basis
  - In 1-D  $\phi(x) = Ae^{ikx} + Be^{-ikx} = A' \cos kx + B' \sin kx$
  - Energy  $E = k^2/2$
  - "wave number"  $\rightarrow$  large *k*, short wavelength, small *k*, long wavelength

 $\mathbf{k} \cdot \mathbf{t} = 2\pi m$ 

-k discretized according to the crystal unit cell translation vector t

# In 3 dimensions, a wave vector k defines a set of planes

- $\mathbf{k} \cdot \mathbf{r} = \text{constant defines a plane}$
- $\exp(i\mathbf{k}\cdot\mathbf{r})$  defines a *plane wave*



(100)

## Plane wave basis sets typically use many more functions than atom-centered ones

- Number depends on
  - Largest wave vector (energy)
  - Volume of the unit cell
  - $M_{\rm PW} = (1/2\pi^2) V E_m^{3/2}$

19

- Quality of basis set characterized by  $E_{\rm m}$ 
  - E.g.,  $E_{\rm m} = 200$  eV, 15 A unit cell,  $M_{\rm PW} \sim 20,000$  functions
  - Integrals are easier to evaluate (not atom centered)
  - Does not depend on the actual system inside the cell
- Primarily for periodic systems, but also applied to molecules

### **Suggested Reading/Viewing**

- Frank Jensen, Introduction to Computational Chemistry, 3rd ed., Wiley (2017).
  - Chapter 5
  - Available online via UB library
- Autschbach, chapter 11
- Cramer
  - Video 4.01: <u>https://www.youtube.com/watch?v=43Kd3yUG5io</u>