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Review

O Several equivalent ways to formulate classical mechanics
*  Newtonian, Lagrangian, Hamiltonian
* Lagrangian and Hamiltonian independent of coordinates

*  Hamiltonian preferred because of central role of phase space to
development

O Molecular dynamics

* numerical integration of equations of motion for multibody system

* Verlet algorithms simple and popular




Dynamical Properties

O How does the system respond collectively when put in a
state of non-equilibrium?
O Conserved quantities

° mass, momentum, energy
* where does it go, and how quickly?

* relate to macroscopic transport coefficients
O Non-conserved quantities
*  how quickly do they appear and vanish?

* relate to spectroscopic measurements

O What do we compute in simulation to measure the
macroscopic property?




Macroscopic Transport Phenomena
O Dynamical behavior of conserved quantities

* densities change only by redistribution on macroscopic time scale

O Differential balance

Mass Energy Momentum
oc(r,t) : oT(r,1) Dv(r,1)
—~+V-j=0 c —~+V-q=0 —~+V.-7=0
o P 1 ’ b ‘

O Constitutive equation

Fick’s law Fourier’s law Newton’s law

j=—-DVc q=—-kVT Ty == W, (pv,)

O Our aim is to obtain the phenomenological transport
coefficients by molecular simulation

* note that the “laws” are (often very good) approximations that
apply to not-too-large gradients

* in principle coefficients depend on c, T, and v
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Approaches to Evaluating Transport Properties

O Need a non-equilibrium condition
O Method 1: Establish a non-equilibrium steady state

* “Non-equilibrium molecular dynamics” NEMD
*  Requires continuous addition and removal of conserved quantities
* Usually involves application of work, so must apply thermostat
* Only one transport property measured at a time
- Gives good statistics (high “signal-to-noise ratio”)
* Requires extrapolation to “linear regime”
O Method 2: Rely on natural fluctuations

*  Any given configuration has natural inhomogeneity of mass,
momentum, energy (have a look)

* Observe how these natural fluctuations dissipate
* All transport properties measurable at once

 Poor signal-to-noise ratio




Mass Transfer
O Self-diffusion

* diffusion in a pure substance

* consider tagging molecules and watching how they migrate

O Diffusion equations

* Combine mass balance with Fick’s law

% — DVZC(r,t) =0

* Take as boundary condition a point concentration at the origin

c(r,t) = 8(r) For given configuration, each molecule represents a
point of high concentration (fluctuation)

O Solution

2
c(r,t)=2rDt —d12 oy _
(r,0) =( ) p[ D1

O Second moment

<r2 (t)> = J rzc(r,t)dr RMS displacement increases as t'?

_ 24Dt Compare to ballistic r ~ t




Interpretation

O Right-hand side is macroscopic property

2 . .
* applicable at macroscopic time scales <7' (¢ )> =2dDt¢ | Linstein
equation

O For any given configuration, each atom represents ““ ®
a point of high concentration (a weak fluctuation) ®

O View left-hand side of formula as the movement

of this atom
< 5 Slope here gives D
”)

~

« ensemble average over all initial conditions

<r2(t)> =[ap" [ar" rf(t)[cS(rl)ﬂ(rN " )}

t=0

 asymptotic linear behavior of mean-square
displacement gives diffusion constant
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* independent data can be collected for each molecule <r2 (t)>




Time Correlation Function

O Alternative but equivalent formulation is possible

4 4
: . . : d
O Write position r at time ¢ as sum of displacements r() = Ii dr =[v(z)dr
0 0

dt
vt/ ,dt
O

dt




Time Correlation Function

O Alternative but equivalent formulation is possible t t

. " . . d
O Write position r at time ¢ as sum of displacements r(#)= fidf = [v(2)ar
O Then : :

t t
<r2 (t)> = <IV(Tl)drl -IV(Tz)dT2> r? in terms of displacement integrals
0 0

t ot
= Jd led (%) <V(72) ' V(T1)> rearrange order of averages
0 0

= 2j.d2'1]ld2'2 (V(72) - v(1))) ”(71 <7+ ”(71 >1T,) 22”(71 >1T,)

0 0
t 7
= 2Jd71 J dt, (v(0)-v(7y —1,)) correlation depends only on time
0 0 difference, not time origin
t
- ZJdT1JdT<V(0) V(7)) substitute 7 =17, — 7,
0 0
t = oo 175 Green-Kubo
2dDt = 2t [dz(v(0) - v(2)) D=— [az(v(0)-v(2)) equation
0
0




Velocity Autocorrelation Function

O Definition
Ct)=(v(0)-v(t))  C(0)= <v2> — dkT /' m

O Typical behavior

N\~ Zero slope (soft potentials)
Diffusion constant is

area under the curve

=
D=- g dz(v(0)- V(1))

yaa
Asymptotic behavior (t = ©) is
Backscattering - \_/ ymp ( )

nontrivial (depends on d)
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Other Transport Properties

O Diffusivity

D:Lva(O)-v(r» v=§[vi]
Vd p 7 i=1
O Shear viscosity
i o N
= { dt(c™ ()0 (0)) o = E}{mv v,

O Thermal conductivity

ﬂT_Vszo

11

oo N
[dt(q(q(0)) q= jZ[é mvi +3 Z”(’”y)]
] £
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Evaluating Time Correlation Functions

O Measure phase-space property A(rN,pY) for a sequence of time

intervals | r—At,—>|I | | | | | | >
Alt) A(t) Aty Aty Aty Alt) Aty Alt) Alty) Alty)

O Tabulate the TCF for the same intervals

* each time in simulation serves as a new time origin for the TCF

| | | | | | | | | |
| | | | | | | | | >

Alty) A(t) Al A) Aty Alts) Alty) At) Altg) Alty)
NN N N N N Y Oy v
(AADA0))  ApAAAFAAFAAFAAFAAFAAFAAG AAGH...

| | | | | | | | | |
| | | | | | | | | 7

Alt) A(t) Al Al Aty Alts) Aty Alt) Alty) Alt)

NY Y VY VY vV vy v

(AQQANA0)) AAFAAFAAFAAFAAFAATAAGAA ...

| | | | | | | | | |
| | | | | | | | | |’

Aly) A A) At) At) Alt) Alt) Alt) Alt) Alt)

v v
(AGBANA0)) AA +A A +AA FAA+A A +...
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Direct Approach to TCF

O Decide beforehand the time range (0,t

* let n be the number of time steps in t,,,.

) for evaluation of C(t)

max

O At each simulation time step, update sums for all times in (0,t_ . )
* nsums to update

* store values of A(t) for past n time steps

* attimestep k. c+=4,_,4, i=1...n

k-n k

O Considerations
* trade off range of C(t) against storage of history of A(t)

* requires n’ operations to evaluate TCF
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Fourier Transform Approach to TCF

O Fourier transform - - |
J}(G)) = J f(t)e_iwtdt f(@)= ﬁ I f((l))eﬂa)tda)

O Convolution

—+oco

C(t)= [ A@)B(x+1)dr

O Fourier convolution theorem
C(w)= A(w)B(w)
O Application to TCF

C(1) = Zv(to) -V(ty +1) Sum over time origins
fo

C(w) = [0((0)]2 With FFT, operation
scales as n In(n)
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Coarse-Graining Approach to TCF 1.

O Evaluating long-time behavior can be expensive

* for time interval T, need to store T/ot values (perhaps for each atom)

O But long-time behavior does not (usually) depend on details of
short time motions resolved at simulation time step

O Short time behaviors can be coarse-grained to retain information
needed to compute long-time properties
« TCF is given approximately

* mean-square displacement can be computed without loss

Method due to Frenkel and Smit




Coarse-Graining Approach to TCF 2.




Coarse-Graining Approach to TCF 2.

v (2)
t

0% n
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Coarse-Graining Approach to TCF 2.

v2(1)

t
0 % n
i |

e (1) » (2) e (3)
t

0% n
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Coarse-Graining Approach to TCF 2.

v2(1)

v (1) v 2y 3)vD(4)
t

0% n
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Coarse-Graining Approach to TCF 2.

v2(1)

e (1) » (2) e (3) » (4) e (5)
t

0% n
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Coarse-Graining Approach to TCF 2.

v2(1) v?(2)
t
——
e (1) » (2) e (3) » (4) e (5) e (6)
t
0% n




Coarse-Graining Approach to TCF 2.

v2(1) v (2)

e (1) » (2) e (3) » (4) e (5) e (6)1/(1) (7)
t

0% n
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Coarse-Graining Approach to TCF 2.

v2(1) v (2)

e (1) » (2) e (3) » (4) e (5) e (6)1/(1) (7) e (8)
t

0% n
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Coarse-Graining Approach to TCF 2.

v (1)
t
; : P
v2(1) v?(2) v (3)
t
——
e (1) » (2) e (3) » (4) e (5) e (6)1/(1) (7) e (8) e 9)
t

0% n




Coarse-Graining Approach to TCF 2.

v (1)
v2(1) v (2) v (3)

v (@) v (2)v D 3)v @)y 5D (6)vP (7)v D (8) vV (9)v D (10)

21 et cetera
07 n
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Coarse-Graining Approach to TCF 2.

. . , Approximate TCF
This term gives the net velocity . . .
over this interval | (¥(O) ¥ ) = (v 0) - v
v (1)
| n’
a0 ) 2 3) |

v (@) v (2)v D 3)v (@) v 5D (6)vP (7)v D (8) vV (9)v D (10)

26




Coarse-Graining Approach:
Resource Requirements

O Memory
* for each level, store n sub-blocks

* for simulation of length T = nkAt requires k x n stored values

compare to n* values for direct method

O Computation

* each level j requires update (summing n terms) every 1/w steps

© total n 1 1 1 nn-n*
TX—|l+—+—+...+— |[=tX
szi
At

* scales linearly with length of total correlation time

compare to T? or T In(T) for other methods
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Summary

O Dynamical properties describe the way collective behaviors
cause macroscopic observables to redistribute or decay

O Evaluation of transport coefficients requires non-equilibrium
condition
* NEMD imposes macroscopic non-equilibrium steady state
* EMD approach uses natural fluctuations from equilibrium
O Two formulations to connect macroscopic to microscopic
* FEinstein relation describes long-time asymptotic behavior
*  Green-Kubo relation connects to time correlation function
O Several approaches to evaluation of correlation functions
* direct: simple but inefficient

* Fourier transform: less simple, more efficient

* coarse graining: least simple, most efficient, approximate
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