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Review and Preview

O MD of hard disks
° Intuitive
* collision detection and impulsive dynamics

O Monte Carlo
 convenient sampling of ensembles
* no dynamics

* biasing possible to improve performance

O Molecular dynamics

equations of motion

integration schemes

evaluation of dynamical properties

* extensions to other ensembles

* focus on atomic systems for now




Classical Equations of Motion

O Several formulations are in use
* Newtonian
* Lagrangian
*  Hamiltonian
O Advantages of non-Newtonian formulations

* more general, no need for “fictitious” forces
* better suited for multiparticle systems
* better handling of constraints

* can be formulated from more basic postulates

O Assume conservative forces

F=-VU Gradient of a scalar potential energy




Newtonian Formulation

O Cartesian spatial coordinates r, = (x,,y;,z;) are primary variables
* for N atoms, system of N 2nd-order differential equations

dzrl._ —_
dar? -

O Sample application: 2D motion in central force field

mi=F-& =—f(r)ié =—xf(\/x2+y2)
mp=F-& =—f(r)i-&, = —yf(dxz +y2)

* Polar coordinates are more natural

m

and convenient

mr29 = ¢ | constant angular momentum

52

mi'=—f(r)+ ~ SN :
- fictitious (centrifugal) force




Generalized Coordinates

O Any convenient coordinates for description of particular system
* use q; as symbol for general coordinate

* examples

=* diatomic {qp- : '9q6} - {Xcom7 Yeoms Zeom> T12 e? q)}

= 2-D motion in central field {q;, q,} = {r, 0}

%

O Kinetic energy

* general quadratic form

K= @O(Q)JFZ;MJ-(Q)@JF%ZZMjk(q)qjqk

usually vanish

> examples
=¥ rotating diatomic K= %m(qlz + q‘§ + q§)+ %m[fz +r70° + (r Sin@)zﬁbﬂ

> 2-D central motion K=




Lagrangian Formulation

O Independent of coordinate system
O Define the Lagrangian

* L(q,4)=K(q,9)-U(q)
O Equations of motion

d| dL oL
4 %0 j=1..N
dt[aqj] dq, !

* N second-order differential equations
O Central-force example

Lzém(fz +r292)—U(r)

d(dL)_oL i 0 — d(oL)_oL (24
dt(afj_ar =| mremnd - S dt(ae'j‘ae - dt(mr 0)=0

F.=-VU=-f(r)




Hamiltonian Formulation 1. Motivation

O Appropriate for application to statistical mechanics and quantum
mechanics

O Newtonian and Lagrangian viewpoints take the g, as the
fundamental variables
*  N-variable configuration space
° 4, appears only as a convenient shorthand for dq/dt

* working formulas are 2nd-order differential equations

O Hamiltonian formulation seeks to work with 1st-order
differential equations
* 2N variables
° treat the coordinate and its time derivative as independent variables

* appropriate quantum-mechanically




Hamiltonian Formulation 2. Preparation

O Mathematically, Lagrangian treats ¢ and ¢ as distinct
° L(g;.49;51)

AL

* identify the generalized momentum as | p; = 3
9

© eg ifL=K-U=1mg’-U(q); p=0L/04=mq

° Lagranglan equatlons Ofm0tlon dt - aq

O We would like a formulation in which p is an independent
variable

° p, is the derivative of the Lagrangian with respect to q; and we're

looking to replace q; with p,

 weneed ..?




Hamiltonian Formulation 3. Defintion

O ...a Legendre transform!
O Define the Hamiltonian, H
H(q.p)=-| La.9)- Y, pd,; |

0K
=—K<q,q>+U<q>+Zaq.qj
J

=—>.a,q; +U@+),(2a,4,)4,
=+Y a,4;+U(q)

=K+U
O H equals the total energy (kinetic plus potential)




Hamiltonian Formulation 4. Dynamics

O Hamilton’s equations of motion

Differential change in L

* From Lagrangian equations, written in terms of momentum

10

ap =p= a_L Lagrange’s equation
dt dq of motion
oL o
p= @ Definition of momentum

_dL oL
dL=—dg+—dg
dq a a4 1
= pdq + pdq
Legendre transform
= —(L-pd
(. pq? e
=—(pdq — qdp) q=+$
dH =—pdq+ qd,
paq+qap <  0H
\p aq

Hamilton’s equations of motion

Conservation of energy

ad __ a4 LGP e =0
d pdt th pPq+4qp

dq dp
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Hamiltonian Formulation 5. Example

O Particle motion in central force field )
H=K+U )
2 2
=2+ U %
2m  2mr?
. 0H nar_pr 5,6 _ o
BT Y a mr?
b O |3y %Pr _ p§3 PN Lagrange oszequatlons
dq dt  mr dt mit =mro” — f(r)

F.=-VU=-f(r)

O Equations no simpler, but theoretical basis is better
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Phase Space (again)

O Return to the complete picture of phase space

* full specification of microstate of the system is given by the values of
all positions and all momenta of all atoms
= T'=(p",r")
* view positions and momenta as completely independent coordinates

=¥ connection between them comes only through equation of motion

O Motion through phase space
* helpful to think of dynamics as “simple” movement through the high-

dimensional phase space
=> facilitate connection to quantum mechanics
=* basis for theoretical treatments of dynamics

= understanding of integrators




Integration Algorithms

O Equations of motion in cartesian coordinates

ﬁ _Pj r=(n.",) . .
dt m 2-dimensional space (for example)
p=(p:.py)
dp ;
) — Fj N
2t F; = ZF,] pairwise additive forces
i O

i£]

os:,

* minimal need to compute forces (a very expensive calculation)

O Desirable features of an integrator

* good stability for large time steps
* good accuracy
* conserves energy and momentum

© time-reversible More on these later
* area-preserving (symplectic)

13
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Verlet Algorithm
1. Equations

O Very simple, very good, very popular algorithm

O Consider expansion of coordinate forward and backward in time
r(t+680)=r()+Lp0)6t+ 5L F(0)61* + L ¥ ()6 + O(81Y)

r(1—80)=r(t)—Lp(t)dt+ 5L F(1)61* -

O Add these together
r(t+0t)+r(t—8t) =2r(t)+ LF(1)6t°
O Rearrange

r(t+6t)=2r(t)—r(t - 6t) + LR ()6t

L6’ +0(81")
+0(6th)

+0(6th)

* update without ever consulting velocities!




Verlet Algorithm 2. Flow diagram

One MD Cycle

Configuration r(t)

- Previous configuration r(t-dt)

One force —|
evaluation per
time step

A

—Compute forces F(t)
on all atoms using r(t)

\ 4

Advance all positions according to
r(t+0t) = 2r(t)-r(t-ot)+F(t)/m dt?

No

Add to block sum

)
End of

Yes
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Entire Simulation

Initialization

<

<

A 4

Reset block sums

[

A ~

New configuration

1 move per cycle

Add to block sum

l—<yclesperblock

A 4

Compute bl

ock average

Compute final results

—

( Block

block?

A’Laverages}
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Verlet Algorithm 2. Flow Diagram

t-Ot t t+Ot
r Given current position and
position at end of previous
time step
K

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Verlet Algorithm 2. Flow Diagram

t-Ot t t+0t

Compute the force at the
current position

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Verlet Algorithm 2. Flow Diagram

t-Ot t t+0t
A M
/
F /

Compute new position from
present and previous positions,
and present force

18

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Verlet Algorithm 2. Flow Diagram

t-20t t-Ot t t+0t

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Forces 1. Formalism

X1

O Force is the gradient of the potential

Yi2

r
F, 1 =—Vu(n,) 12
du(r du(r
Force on 1, :_¥ex —%ey ) » 172
due to 2 & i ’”12=[(X2—x1) +(»2 =) ]
__du(”lz){a’ize L g }
= . y
driy | ox | 4 =
— Energy
=—f(r12)[x12ex +y12ey} — Force
N2 5
F 1 =-F 0 \ |
N uf—-
| | | |
1.0 1.5 2.0 2.5

Separation, r/c
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Forces 2. LJ Model

X1

O Force is the gradient of the potential
AGPY)

N2
e.g., Lennard-Jones model

Yi2

— r
K== [xlzex + )ﬁzey] 12

Ny = [(xz —x1)2 +()2 _)’1)2]1/2

o2 ]

du
f(r)= -
48¢
=4
o
48¢
b =7
o

13
o
rj

o 4 I{ o ’
— | ——=] — X;He . + yHe
’”12] 2(’12} [ 12€x T V12 y:|

I

— Energy
— Force

-2 -

T T
1.5

Separation, r/c

T T
2.0 2.5
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Verlet Algorithm. 4. Loose Ends

O Initialization
* how to get position at “previous time step”’ when starting out?

* simple approximation

r(ty — ot) =r(ty) — v(ty)ot

O Obtaining the velocities

* not evaluated during normal course of algorithm

* needed to compute some properties, e.g.
= temperature

«> diffusion constant

* finite difference
v(7) = %&[r(t +01) —r(t = 61) |+ O(61%)
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Verlet Algorithm 5. Performance Issues

O Time reversible

* forward time step
r(t+6t)=2r(t) - x(t — 6t) + L F ()61’

* replace ot with —ot
r(t+(=60)) = 2r(t) = x(t — (=61)) + LF(t)(=61)
r(t—ot)=2r(t)—r(t + 6t)+ LF(1)6t°

* same algorithm, with same positions and forces, moves system

backward in time

O Numerical imprecision of adding large/small numbers
O(ot!) O(ot!)

/
r(t+o0t)—r(t) = F(z‘) —r(t— 5t)‘+ %F(t)&2
[/ /

O3t O(8t?) 0(52)




Initial Velocities

(from Lecture 3)

O Random direction
* randomize each component independently

* randomize direction by choosing point on spherical surface

O Magnitude consistent with desired temperature. Choices:

* Maxwell-Boltzmann.: prob(v,) e exp(—%mvﬁ / kT )
* Uniform over (-1/2,+1/2), then scale so that %Z Vl-z, =kT/m
* Constant at v, =tNkT /m

* Same for y, z components

O Be sure to shift so center-of-mass momentum 1S zero

Px = %Zpi,x
Pix — Pix _Px

29
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Leapirog Algorithm

O Eliminates addition of small numbers O(6t?) to differences in
large ones O(6t°)

O Algorithm
r(t+0t) =r(t) + v(t + 1 61)ot

V(1 +500) = v(t =3 6t) + L F(0)Jt




Leapirog Algorithm

O Eliminates addition of small numbers O(6t?) to differences in
large ones O(t°)

O Algorithm
r(t+0t) =r(t)+ v(t + 1 61)ot

V(1 +500) =\v(t =3 6t) + L F(0)Jt

O Mathematically equivalent}g\/erlet algorithm

r(t+60) =r(t)+| v(t—1 60+ LF(1)ot |6t

31




Leapirog Algorithm

O Eliminates addition of small numbers O(6t?) to differences in
large ones O(t°)

O Algorithm
r(t+0t) =r(t)+ v(t + 1 61)ot

V(1 +500) =\v(t =3 6t) + L F(0)Jt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(t)+| v(t—1 60+ LF(1)ot |6t
?

r N
r(t) as evaluated from 4 oy _ v — 5y 4 (e — 1 51yt
previous time step 2

32




Leapirog Algorithm

O Eliminates addition of small numbers O(6t?) to differences in
large ones O(t°)

O Algorithm
r(t+0t) =r(t)+ v(t + 1 61)ot

V(1 +500) =\v(t =3 6t) + L F(0)Jt

O Mathematically equivalent}KVerlet algorithm

r(t+60) =r(t)+| v(t—1 60+ LF(1)ot |6t
?

- N
r(t) as evaluated from .y _ v, 51y 4 (e — L5161
previous time step 2

r(t+0t)=r()+ [(r(l) —r(t—01))+ %F(t)&z]

33




Leapirog Algorithm

O Eliminates addition of small numbers O(6t?) to differences in
large ones O(t°)

O Algorithm
r(t+0t) =r(t)+ v(t + 1 61)ot

V(1 +500) =\v(t =3 6t) + L F(0)Jt

O Mathematically equivalent}KVerlet algorithm

r(t+60) =r(t)+| v(t—1 60+ LF(1)ot |6t
?

- A
r(t) as evaluated from 4 oy _ v _ 5y 4 (e — 1 51yt
previous time step 2

r(t+o0t)=r()+ [(r(t) —r(t—01))+ %F(t)étz]

r(t + 0t) = 2r(t) —r(t — 6t) + %F(t)&z original algorithm

34
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Leapirog Algorithm 2. Flow Diagram

t-Ot t t+0t

Given current position, and
velocity at last half-step

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Leapirog Algorithm 2. Flow Diagram

t-Ot

t

t+0t

Compute current force

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Leapirog Algorithm 2. Flow Diagram

t-Ot

t

t+0t

Compute velocity at

next half-step

)
/

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Leapirog Algorithm 2. Flow Diagram

t-Ot t t+0t

Vs Compute next position

/

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Leapirog Algorithm 2. Flow Diagram

t-20t t-Ot t t+0t

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Leapirog Algorithm. 3. Loose Ends

O Initialization
* how to get velocity at “previous time step” when starting out?

* simple approximation

v(tg — 5 61) = v(19) — - F(t9) § Ot

O Obtaining the velocities

* interpolate

v(t) = %[V(t+%5t) +v(t—160)]
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Velocity Verlet Algorithm

O Roundoff advantage of leapfrog, but better treatment of
velocities

O Algorithm

r(t+0t) =r(t) + v(1)ot + 5= F ()5t
V(1 +61) = V(1) + 5 [F(2) + F(t + 61)] 6t
O Implemented in stages
° given current force
° compute r at new time

* add current-force term to velocity (gives v at half-time step)

° compute new force

* add new-force term to velocity

O Also mathematically equivalent to Verlet algorithm
(in giving values of r)
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Velocity Verlet Algorithm
2. Flow Diagram

t-Ot t t+0t

Given current position,

velocity, and force

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Velocity Verlet Algorithm
2. Flow Diagram

t-Ot

t

t+0t

Compute new position

7#

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Velocity Verlet Algorithm
2. Flow Diagram

t-Ot

t

t+0t

Compute velocity at half step

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Velocity Verlet Algorithm
2. Flow Diagram

t-Ot

t

t+0t

Compute force at new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Velocity Verlet Algorithm
2. Flow Diagram

t-Ot

t

t+0t

Compute velocity at full step

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Velocity Verlet Algorithm
2. Flow Diagram

t-20t t-Ot t t+0t

Advance to next time step,

repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids
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Other Algorithms

O Predictor-Corrector
* not time reversible

* easier to apply in some instances
=¥ constraints

=¥ rigid rotations

O Beeman

* better treatment of velocities

O Velocity-corrected Verlet




Summary

O Several formulations of mechanics

*  Hamiltonian preferred

=* independence of choice of coordinates
=* emphasis on phase space

O Integration algorithms
* Calculation of forces

* Simple Verlet algorithms
=* Verlet
= Leapfrog
= Velocity Verlet

O Next up: Calculation of dynamical properties
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