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The PES is the crux of any attempt to understand

or predict behavior of material systems
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The PES is a function, or surface, in a high-

dimensional space
Intramolecular

* Potential energy as a function of Energy NI
nuclear positions: E(ri,r2,rs,...) I I

— Electronic contributions are averaged out

— Nuclei may be treated classically or
quantum-mechanically
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The PES is a function, or surface, in a high-

dimensional space

* Potential energy as a function of
nuclear positions: E(ri,rs,r3,...)

— Electronic contributions are averaged out

— Nuclei may be treated classically or
quantum-mechanically

— Can visualize up to at most two |
coordinates

— Choice of how to define coordinates can
be important

— Often focus 1s on minima and saddle
points, but we will need more than this ¥



Quantum chemistry is the application of

quantum mechanics to electrons and nuclei

 In principle, the PES can be computed from physical laws
* QM is needed because particles are very light in mass

« We will discuss the basic formalism and principles of
quantum chemuistry first, to lay a foundation to understand
the behavior qualitatively

« Later we will go into detail about methods of computational
chemistry that are used to compute the PES accurately

* Let’s get started...



The wavefunction is the full description of

the (micro)state of a QM system

Example: a single particle in a 3-D space

U(x,y,z,t)

An alternative formulation can be given in terms of momenta

U (Dzs Dy, P2» t)
— This contains information equivalent to w(x, y, z, f)

* U  are related as Fourier transforms

We will work exclusively with the “position representation™



Beware of different role of coordinates in

classical-mechanics formulation

* Position and momentum define the state of a classical particle
L, Y, <, vapyapz

— These are functions of time
* Do not confuse with same quantities used in the wavefunction

U(x,y,z,t)

— Here, x, y, z are parameters that specify where the wavefunction is
evaluated. They are not themselves state variables



For a many-particle system, wavefunction

depends simultaneously on all coordinates

\Il(wlayhzla L2y Y2922y« y LNy YN, zNat) = \II(T7 t)

* In chemistry applications, the particles are electrons and
nuclel

— Spin 1s also an important parameter, to be discussed later

« Evaluation of wavefunction of a macroscopic system 1s
hopelessly difficult

 We focus on evaluation of wy for the electrons 1n a set of
molecules with a total of 10 or so atoms



Wavefunction relates to the probability to find

the particle(s) at the specified coordinates
* Wavefunction 1s a complex number

— 1.€. having real and imaginary parts

 [ts magnitude 1s a probability density

— U*Wdr probability to observe system in volume dt at coordinate t

Wavefunction 1s normalized to unity

/\I/*\I/de /|\112|de (T*|®) =1

“bra-ket” notation

Average, or expectation value of an operator M
<\IJ*|M|\I!> — /\P*M\Ide



The Schrodinger equation describes the

time evolution of the wavefunction

h— — HU
"ot

* H is the Hamiltonian operator

— Total-energy operator. Sum of kinetic- and potential-energy operators:

A R’ _, h? 0?
=_ V=—
2m Ve 2m —~ 0t,?

+ V(1)

— We consider only time-independent Hamiltonians (e.g., no EM field)

— We will soon do some simple examples that demonstrate how this

equation is applied. First, a few more developments...
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Separation of variables is applied to generate

the time-independent Schrodinger equation

* The SE derivatives include separate time and position terms

+9Y a4y

- Ot \

Time derivative Position derivatives

* This suggests attempting a solution of the form
¥(7,1) = ¥(7)x(t)
* Let’s work through the math...
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The time-independent Schrodinger equation

is the central formula in quantum chemistry

H(1)y(1) = (1) E

* This 1s an eigenvalue equation. Solutions are “stationary states™

* Eigenvalues E are the energies accessible to the system
described by H. Both y and £ are important.

» The full time dependence of stationary states 1s easily obtained
if  1s known
U(7,t) = o()e TP
— Used when examining time-dependent perturbations

» — Not of interest 1n this course



Particle-in-a-box model exhibits many

important qualitative features of interest to us

 Particle moves within fixed boundaries in a 1D space

* No force acts (V= 0) except at boundaries, where V' = o

Ato @ A to oo

* (Can show that solutions 1n regions

I and III are =0 Vel

. I 11 111
* Inregion II, we solve

f-\I?,b(:c) = A’ 821'0(:13) = Y(x)E x=0 x=1 x

B 2m 8;02 Credit: Levine, 7th ed.
— For continuous y, we have B.C. w =0atx=0, /
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Demonstrate solving in Mathematica

2

A
In[3435]:= DSolve[{-z— W' [x] = W[x] €, ¥[0O] =0, ¥[1] = e}, vIx], x]
m

Out[3435)= Use this € symbol instead of E because the latter is predefined to mean the constant e

Hzl/[X] . ;1 S.in[v?vixv‘?] iiiﬁl;ﬁ \,«?] :0}}

A2 1 A/m e

This indicates that a non-trivial solution is found only for Sin [ == 0. This happens when

A2 1 /m e

=nm, or
_n’m*n _ n’h? . i NTTX
€= & = 3 for which w(x) =csin( T )

The constant is determined by normalization /¢*¢dr =1l

nxx nixx
In[3449]:= Simplify[Integrate[Sin[ T ] S'in[ T ] , {X, O, 1}] , Assumptions »n e Integers]
Out[3449]=

1

2

Soc=(%)y2
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PiaB model demonstrates discretization of

energies

En — n = ]_, 2, 3, . o o “‘quantum number” Energy-level diagram

Lowest possible energy is not zero! Energy

« Relative difference vanishes with
Increasing 7:

AE (n+1)* —n® h?/8ml>

E n? h2/8mi2

e Behavior 1s more
continuum-like
at large n

16



Behavior is more continuum-like (classical)

for large mass, size, and/or temperature

* From statistical mechanics, energy-level probability follows
a Boltzmann distribution

E n2h?
E,)) =exp| ——— | = exp| —
P(Ex) p( kBT) p( 8ml2kBT)

« Large m, [, or T increases
importance of states at
larger n

Large mi?T

Small mPT

— Behavior 1s more classical
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PiaB model demonstrates nodal structure of

wavefunction

« Wavefunction, y,(x)

° Pr()bablhty denSity, wn *(x) wn(x) Higher-energy wavefunctions have more nodes

Larger curvature = larger kinetic energy

n=1 n=2 = n=10 n=20 n=50

-V AV VEVAVAVAVEEY ' .

012345 012345 012345 012345 012345 012345

— For a given state, some positions have zero probability

— Continuum limit approached for large n (changes too fast to resolve)



PiaB wavefunctions are orthogonal and

normalized (orthonormal)

[ watriar - mnz{o m # n

Kronecker
delta function

 Integral 1s analogous to dot
product, in an infinite-
dimensional space

wTy — Z LiYi

1
— Each 7 value in integral is a
different “index”

19

Mathematica evaluation of integral

In[3593]:=

In[3594]:=

Out[3594]=

Out[3595]=

Out[3596]=

0ut[3597]=

pPsilx_, n_,

1]

= sare[ 2] sin[npi 7]

Integrate[psi[x, m, 1] ~psi[x, n, 1], {x, 0, 1}]

Simplify[%, Assumptions » {n € Integers, m € Integers}]

Integrate[psi[x, n, 1] ~psi[x, n, 1], {x, 0, 1}]

Simplify[%, Assumptions » {n € Integers}]

2nCos[ns] Sin[(mx] -2mCos[mx] Sin[n ]

0
Sin[2n ]
1-
2nrn
1

m? - n?n




Suggested Reading/Viewing

« Autschbach Chs. 3,4,5
 Levine Chs. 1,2,3
« Cramer, Videos 2.01, 2.02
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https://www.youtube.com/playlist?list=PLkNVwyLvX_TFBLHCvApmvafqqQUHb6JwF
https://www.youtube.com/playlist?list=PLkNVwyLvX_TFBLHCvApmvafqqQUHb6JwF

