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The PES is the crux of any attempt to understand 
or predict behavior of material systems
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PES model

Potential-Energy Surface



The PES is a function, or surface, in a high-
dimensional space
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• Potential energy as a function of 
nuclear positions:
– Electronic contributions are averaged out
– Nuclei may be treated classically or 

quantum-mechanically
– Can visualize up to at most two 

coordinates
– Choice of how to define coordinates can 

be important
– Often focus is on minima and saddle 

points, but we will need more than this
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Quantum chemistry is the application of 
quantum mechanics to electrons and nuclei
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• In principle, the PES can be computed from physical laws

• QM is needed because particles are very light in mass
• We will discuss the basic formalism and principles of 

quantum chemistry first, to lay a foundation to understand 
the behavior qualitatively

• Later we will go into detail about methods of computational 
chemistry that are used to compute the PES accurately

• Let’s get started…



The wavefunction is the full description of 
the (micro)state of a QM system
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• Example: a single particle in a 3-D space

• An alternative formulation can be given in terms of momenta

– This contains information equivalent to ψ(x, y, z, t)

•          are related as Fourier transforms

• We will work exclusively with the “position representation”



Beware of different role of coordinates in 
classical-mechanics formulation
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• Position and momentum define the state of a classical particle

– These are functions of time

• Do not confuse with same quantities used in the wavefunction

– Here, x, y, z are parameters that specify where the wavefunction is 
evaluated. They are not themselves state variables



For a many-particle system, wavefunction 
depends simultaneously on all coordinates
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• In chemistry applications, the particles are electrons and 
nuclei
– Spin is also an important parameter, to be discussed later

• Evaluation of wavefunction of a macroscopic system is 
hopelessly difficult

• We focus on evaluation of ψ for the electrons in a set of 
molecules with a total of 10 or so atoms  



Wavefunction relates to the probability to find 
the particle(s) at the specified coordinates
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• Wavefunction is a complex number
– i.e. having real and imaginary parts

• Its magnitude is a probability density
–                probability to observe system in volume dτ at coordinate τ 

• Wavefunction is normalized to unity

• Average, or expectation value of an operator
“bra-ket” notation



The Schrödinger equation describes the 
time evolution of the wavefunction
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•     is the Hamiltonian operator
– Total-energy operator. Sum of kinetic- and potential-energy operators:

– We consider only time-independent Hamiltonians (e.g., no EM field)
– We will soon do some simple examples that demonstrate how this 

equation is applied.  First, a few more developments…



Separation of variables is applied to generate 
the time-independent Schrödinger equation
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• The SE derivatives include separate time and position terms

• This suggests attempting a solution of the form

• Let’s work through the math…

Time derivative Position derivatives
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For both sides to be equal for all t, τ, 
both must be a constant, designated E.

-
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The time-independent Schrödinger equation 
is the central formula in quantum chemistry
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• This is an eigenvalue equation. Solutions are “stationary states”
• Eigenvalues E are the energies accessible to the system 

described by    . Both ψ and E are important.
• The full time dependence of stationary states is easily obtained 

if ψ is known

– Used when examining time-dependent perturbations
– Not of interest in this course



Particle-in-a-box model exhibits many 
important qualitative features of interest to us
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• Particle moves within fixed boundaries in a 1D space

• No force acts (V = 0) except at boundaries, where V = ∞
• Can show that solutions in regions 

I and III are ψ = 0
• In region II, we solve

– For continuous ψ, we have B.C. ψ = 0 at x = 0, l
Credit: Levine, 7th ed.



Demonstrate solving in Mathematica
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Use this ε symbol instead of E because the latter is predefined to mean the constant e



PiaB model demonstrates discretization of 
energies
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• Relative difference vanishes with 
increasing n:

• Behavior is more 
continuum-like 
at large n

n

“quantum  number” Energy-level diagram
Lowest possible energy is not zero!



Behavior is more continuum-like (classical) 
for large mass, size, and/or temperature
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• From statistical mechanics, energy-level probability follows 
a Boltzmann distribution

• Large m, l, or T increases
importance of states at 
larger n
– Behavior is more classical



PiaB model demonstrates nodal structure of 
wavefunction
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• Wavefunction, ψn(x)

• Probability density, ψn*(x) ψn(x)

– For a given state, some positions have zero probability
– Continuum limit approached for large n (changes too fast to resolve)

0

0

Higher-energy wavefunctions have more nodes
Larger curvature = larger kinetic energy



PiaB wavefunctions are orthogonal and 
normalized (orthonormal)
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• Integral is analogous to dot 
product, in an infinite-
dimensional space

– Each τ value in integral is a 
different “index”

Kronecker 
delta function

Mathematica evaluation of integral



Suggested Reading/Viewing
• Autschbach Chs. 3,4,5
• Levine Chs. 1,2,3
• Cramer, Videos 2.01, 2.02
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https://www.youtube.com/playlist?list=PLkNVwyLvX_TFBLHCvApmvafqqQUHb6JwF
https://www.youtube.com/playlist?list=PLkNVwyLvX_TFBLHCvApmvafqqQUHb6JwF

