
Hard-Sphere Molecular Dynamics

In this section we introduce the concepts and methods needed to perform
molecular dynamics simulations of hard spheres. While these techniques are not
generally useful, in that they do not apply to the “soft” potentials that are of
greater practical interest, they serve a purpose for us now. Hard-sphere dynamics
is the dynamics of billiards, or marbles, so their behavior is very familiar to us.
While it is not a trivial matter to implement an efficient HS MD algorithm, once
it is in place very little “tuning” is needed to make hard-sphere MD simulations
work robustly—correctly programmed HS MD simulations are very forgiving of
the user. And in implementing a HS MD simulation one encounters and must
come to understand almost all of the basic elements that make up any molecular
simulation. Hard-sphere molecular dynamics simulations provide us with a basis
for presentation and discussion of these simulation elements.

Once we have introduced the HS MD algorithm, we will move on to basic simu-
lation elements, including boundary conditions, averaging and error estimation,
the structure of a simulation, and initialization.

Hard-sphere dynamics

Hard spheres undergo impulsive, pairwise collisions. Never do three or more
spheres collide simultaneously, all meeting at exactly the same time, so the
collision dynamics can always be handled one pair at a time. When hard spheres
collide they experience an infinite force over an infinitesimal time, yielding an
impulse (product of force and time) that is finite. This impulse imparts an equal
and opposite change in momentum to the two colliders. As shown in Fig. 1,
the force is directed along the centers of the two atoms, and of course acts to
push them away from each other. The magnitude of the impulse is governed by
conservation of energy. If we write the momentum change of each atom in terms
of the impulse , such that

pnew
1 = pold

1 + ∆p
pnew

2 = pold
2 −∆p

The only energy involved is that due to the kinetic energies of the spheres.
Conservation of energy requires

1
m1
|pnew

1 |2 + 1
m2
|pnew

2 |2 = 1
m1

∣∣pold
1

∣∣2 + 1
m2

∣∣pold
2

∣∣2

The equation is sufficient to specify the magnitude of ∆p. Taking its direction
as described in Fig. 1, we have

∆p = 2m1m2

m1 +m2

v12 · r12

σ2 r12

To illustrate the plausibility of this expression, consider two limiting cases. In a
glancing collision, where the two spheres barely touch, the dot product v12 · r12

1

approaches zero and very little impulse is applied to either. In the opposite case,
where they particles suffer a head on collision, the impulse is (taking the masses
equal, and noting |r12| = σ at collision) ∆p = p2 − p1, and the spheres swap
velocities (each reversing velocity, for example, if they approach with the same
speed as each other).

Figure 1: Forces at collision.

Hard-sphere kinematics

When the spheres are not colliding they move in free flight; no forces act on
them and they do not accelerate. Thus over a collision-free interval of time the
position advances according to

r(t+ ∆t) = r(t) + v(t)∆t

For such simple motion it is possible to solve analytically for the time of collision
between two given spheres. The time interval Deltat to the next collision satisfies

|r2(t+ ∆t)− r1(t+ ∆t)|2 = σ2

That is, the square distance between the spheres at the collision time is equal to
the collision diameter σ. Expansion of this formula leads to a quadratic equation
in ∆t

|v12|2(∆t)2 + 2(v12 · r12)(∆t) + (|r12|2 − σ2) = 0

As shown in Fig. 2, one of three situations can arise:

• If (v12 · r12) is positive, the spheres are moving apart and will never collide.

• If (v12 ·r12) is negative, the spheres are approaching, but will not necessary
collide (indicated by a negative discriminant of the quadratic equation).

• Finally, they may be approaching and on a collision course ((v12 · r12) is
negative and the discriminant is positive).

2

Figure 2: Collision-approach cases.

Integration strategy

The time evolution of a system of hard spheres can be traced by handling
each collision in sequence. The process is a simple repetition of finding the
next colliding pair, advancing all spheres to the time of collision of this pair,
handling the collision dynamics of the pair, and moving on to detect the next
collision. Conceptually, and in practice, it is worthwhile to have in mind some
finite interval of time, t; the aim is to advance to the system from the initial
time through this time interval, handling all intervening collisions in sequence.
Completion of the interval signals an appropriate point for examination of the
system and accumulation simulation averages (one could take this assessment
at each collision, but such a scheme unnecessarily restricts the sampling of
configurations to those in which one pair is colliding). The process is depicted
schematically in Fig. 3.

Figure 3: Constant-timestep integration through collisions.

The process of stepping through collisions to cross a fixed interval of time can
be implementing using a recursive strategy. One has a method (or subroutine)—
call it doStep—that takes as its argument an interval of time. The method is
constructed so that it advances the system across the specified interval, handling
the intervening collisions, so that when it returns the system is at the end of
the given time interval. The recursive strategy is as follows: doStep detects the
next collision, advances the system to that time and handles the dynamics, and
then calls itself with the remainder of the time interval as an argument. The
termination condition for the recursion occurs when doStep does not detect a
collision occurring in the time interval passed to it.

3

Significant efficiency can be realized in the algorithm through intelligent mainte-
nance of a collision list. For this purpose it is helpful to have in mind some fixed
ordering of the atoms in a list. The ordering is completely arbitrary, and need
not change ever during the simulation (although one might wish to do otherwise,
as discussed in another chapter). Each atom links to the next one up and the
next one down the list; Fig. 4 describes the concept for a six-atom list. The
ordering of atoms in this manner is useful not only for hard-particle simulations
of the type we examine here, but also in more conventional molecular dynamics
and Monte Carlo simulations. Now, with the atoms ordered in this fashion, we
track collisions by having each atom maintain a record of the next atom it is
scheduled to collide, considering only those atoms up-list from it. If atom 3 is on
a collision course with atom 1, it is the job of atom 1, not atom 3, to keep hold
of that fact. Each atom also records the amount of time that until it meets its
collision partner. For example, consider the scenario presented in Fig. 5. Atom
1 expect to collide with atom 3 in 1.2 fs; atom 2 expects to collide with atom 4
in 0.7 fs; atom 3 with atom 5 in 0.1 fs; and so on. No atom is uplist of atom
6, so it anticipates no collision. A simple traversal of the collision list indicates
that atom 3 has the smallest collision interval, so 3 and 5 collide next. These
are highlighted in red and blue, just as done in the applet of Illustration 5. Note
that atom 5 sees only its impending collision with atom 6; the 3-5 collision comes
about from the information held by atom 3.

Figure 4: Ordering of atoms for tracking collisions.

With this list in place it is a very simple matter to detect the next collision. The
problem then is to ensure that it is properly updated with each collision, using
minimal effort. First, after advancing the system 0.1 fs to the 3-5 collision and
dealing with their collision dynamics, all collision times must be decremented by
the amount of time advanced. The 2-4 collision time, for example, is reduced
to 0.6 fs. Note first that most collision pairs do not have to be re-assessed in
light of the 3-5 collision. The trajectories of 2 and 4 are unchanged, so only the
only update for that pair is the decrement of their collision. However, there are
some subtleties that must be handled correctly. Upon collision, it is (of course)
necessary to update the collision partners of 3 and 5, finding the minimum time
of collision of each with each atom uplist of them. It is also necessary to look
at all atoms downlist of 3 and 5 that were previously on a collision course with
either. For example, in Illustration 7 atom 1 was scheduled to collide with 3 in
1.2 fs. Since atom 3 is now on a different course, atom 1 must be checked against
all of its uplist atoms for its next collision. It is also necessary to check all
downlist atoms for new collisions with atoms 3 and 5, as their changed trajectory
may now lead the to collide with, for example, atom 2 before 2 hits atom 4. A

4

possible scenario is diagrammed in Illustration 8

Figure 5: Tracking of collision partners.

From this description, maintenance of the collision list seems like a complex
process. It is not all that bad, and could be much worse. Additional efficiencies
can be brought into this process at the cost of additional complexity, but we
will postpone this detailed discussion to another time. The simple alternative of
checking all pairs at every collision is much too inefficient to serve as a viable
algorithm. The efficiencies gained in the basic collision detection algorithm
discussed here certainly justify the bit of effort needed to sort through all the
scenarios needed to maintain the list.

5

	Hard-Sphere Molecular Dynamics

