
Physical quantities in molecular simulation
In this section we review the types of physical quantities encountered in a
molecular simulation.

State variables

Molecular simulation describes physical systems, particularly ones that are
usually examined in the context of chemical thermodynamics. Naturally, the
quantities encountered in thermodynamics are relevant to molecular simulation.
This includes the temperature and internal energy, pressure and volume, and
moles and chemical potential; additional thermodynamic state variables arise in
mixtures, and other cases such as when surface tension is relevant.

It is important to pay attention to the pairing of the variables as just given.
Here they are again:

Extensive Variable Conjugate Field
Internal energy, E Temperature, T
Volume, V Pressure, P
Number of molecules, N Chemical potential, µ

Note that each pair comprises an extensive variable, one that scales linearly
with the system size, and a conjugate field variable, which is intensive and thus
size-independent. The full specification of the thermodynamic state requires that
one of each pair be specified. The value of the each of the resulting dependent
variables is then given as some sort of an average over all the microscopic
configurations of the molecules of the system. One of the aims of molecular
simulation is to perform this averaging and report, for example, how the internal
energy depends on temperature, pressure and number of molecules for a system
of interest.

Different molecular simulation algorithms are required for different choices of the
dependent and independent state variables. Common choices for the independent
variables are EVN (the microcanonical ensemble), TVN (canonical ensemble),
TPN (isothermal-isobaric ensemble) and TVµ (grand-canonical ensemble). Other
choices are possible, but note that there must always be at least one extensive
variable in the set; otherwise there is nothing to specify the absolute size of the
system, and the state is not well defined (violation of the Gibbs phase rule).

Configuration variables

Molecular simulation of course deals with the arrangements and rearrangements
of molecules, so variables specifying the molecular configurations play a central
role. The “configuration” is given by all those variables needed to fully specify the

1



microscopic state of the set of molecules and their atoms. This includes primarily
the positions and momenta of all atoms. We use the symbol r to represent the
position vector, and p the momentum vector. In Cartesian coordinates, the
momentum is simply related to the velocity v through p = mv, where m is the
mass. Molecular position and momentum vectors are sometimes used, and these
normally apply to the center of mass of the molecule. Orientation variables
(position and momentum) may arise naturally in the treatment of molecules.
Sometimes it is more convenient to specify the configuration in terms of molecular
position and momentum, with atomic coordinates given in a molecule-based
frame, such that atom positions are specified in terms of bond angles and bond
distances. We will postpone discussion of these complicating features until later,
when we examine more complex and realistic molecular models.

If an extensive variable is not included in the state variables as discussed above, it
becomes a configuration variable. So in an isobaric simulation (in which pressure
is imposed instead of the volume), the volume will fluctuate as part of the
simulation process, and the full microscopic state has the instantaneous volume
as one if its variables. Likewise, in the grand-canonical ensemble, the number
of molecules is a fluctuating configuration variable. Configuration variables
of this type are averaged over many configurations to yield the corresponding
thermodynamic state variable (e.g., in isothermal systems the thermodynamic
energy is an average of configurational energy).

Special mention should be made of time, which plays a central role in molecular
dynamics but normally has no significance in Monte Carlo simulations.

Note that this discussion applies to systems modeled classically (i.e., using
classical mechanics). Electronic degrees of freedom are of interest in some cases
(e.g., chemical reactions), and these may be treated with quantum mechanics.
For light atoms and/or low temperatures, quantum effects are relevant also to
the atomic nuclei, and special measures must be applied in these cases.

Properties

Other important physical quantities can be computed given a specific molecular
configuration. In addition to the energy, there are forces and torques that are
needed to advance a molecular dynamics simulation. The virial is routinely
computed to measure the pressure, and the stress tensor may be needed to
evaluate rheological properties. Indeed, it can be quite enlightening to learn
and implement the formulas used to compute common but nontrivial physical
properties (e.g., diffusivity, viscosity, dielectric constant) from quantities that are
averaged over molecular configurations. Other properties of interest characterize
uniquely molecular behaviors. An example is the radial distribution function,
which quantifies the molecular structure.

All of the foregoing properties are special in that they have “instantaneous”
values that can be associated with each configuration. This can be contrasted
with the “statistical” properties, such as the entropy and free energy. These
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properties do not have values defined for an individual configuration. Instead
these properties depend on features of the entire ensemble of configurations. For
example, the entropy is related to the number of distinct configurations that
can be formed consistent with particular values of E, V , and N . Hence there
is no “entropy of a configuration”, but there is an entropy of an ensemble of
configurations.

Model parameters

Another class of physical quantities arises with the specification of the molecular
model. Classical models of molecular interactions are defined in terms of simple
functions. These functions take as inputs the atomic distances and from them
output a potential energy, so at a minimum (with some exceptions) they introduce
a characteristic length and a characteristic energy in their definition. As an aside
we note that the “size” (and, more obviously, the “energy”) of a model molecule
is not a well defined quantity, and that it is only through interaction with another
molecule that the “size” manifests itself. Consequently the characteristic size
and energy are more properly associated with the pair interaction rather than
with the molecule itself.

More complex model potentials usually introduce more than one size and energy
parameter. These may introduce force constants for vibrations, bends, and
torsional motions, bond lengths, asymmetric potential parameters, and so on.
These models also may be constructed in part using Coulombic point charges or
point multipoles.

Dimensions, Units, and Scaling

The table below shows typical values of commonly used molecular variables.
Because simulations involve on the order 103 molecules instead of 1023, values
for the mass, energy, and volume are very small numbers when expressed in
the common macroscopic units (meters, Joules, grams, etc). Working with such
small numbers can be inconvenient, but the remedy is obvious and simple: use
different units, ones more appropriate to molecular-scale magnitudes. Thus we
can work with Angstroms, Daltons, ergs, and so on. An alternative approach
is to work with dimensionless variables, in which all physical properties are
scaled using appropriate combinations of a characteristic size, energy and/or
mass (these three are sufficient to de-dimensionalize most properties that arise
in molecular simulation); these values usually come from an appropriate atomic
mass and parameters of a model for the pair potential. There are two advantages
to working with dimensionless groups. First, their use ensures that all unit
conversions are handled automatically. For example, in isobaric simulations
it is necessary to evaluate the group PV/kBT . If dimensionless quantities are
used (P ∗ = Pσ3/ε, V ∗ = V/σ3, T ∗ = kBT/ε, where ε and σ are a characteristic
energy and size, respectively), then the group is correctly given by P ∗V ∗/T ∗.
However, if P is given in bar, V is in cubic Angstroms, and T is in Kelvins,
then one must pay heed to use an appropriate value for Boltzmann’s constant to
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ensure that the units cancel properly. Such problems arise in many places, and
they make programming tiresome and error-prone. If all physical quantities are
scaled by the same characteristic values these problem vanish.

Figure 1: Typical magnitudes of variables encountered in a molecular simulation.

Note that the benefits gained from using dimensionless quantities are equally well
realized if one takes care to use a consistent set of units within the simulation.
Agree that all properties within the simulation will be expressed in, for example,
picoseconds, Angstroms, and Daltons, and that temperature is always actually
kBT , etc., and the units will again take care of themselves. In fact, this is exactly
what is done when one scales by σ and ε; one is defining a new system of units in
which these parameters are unity. A dimensionless length L/σ = 5 is perfectly
well described as “five sigmas”, just as one speaks of L = 5Å as “5 Angstroms”
and writes just as well as “L/Å = 5”. A dimensionless pressure P ∗ = 3 (as
defined above) is “three epsilons per cubic sigma”, although no one speaks of it
this way. In this view, insertion of values for σ and ε to recover conventional
units is no different than applying a conversion from (say) Angstroms to recover
meters.
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Regardless of the choice of an internal system, the units will not have a desired
or familiar form for every property, in which case a conversion can be performed
upon input or output to express the property in a preferred unit. It is a good
idea to keep this conversion process isolated to the input/output segments of
the program, and to work with a self-consistent units at all other places. One
exception to this rule arises. It can be computationally expedient to work with
a coordinate system that ranges over a unit length, so that all atom coordinates
lie between 0 and 1 (or, alternatively, −1/2 and +1/2). Then special care must
be taken to rescale distances and velocities so that the values are consistent with
the simulation units. We discuss this choice further in the section on periodic
boundary conditions.

For very simple systems, molecular modelers often prefer to keep the simulation
inputs and outputs in scaled form. This merely postpones the conversion to more
traditional units. This might be done because when the simulation is performed
there are no physical values for σ and ε in mind (no real physical system is being
modeled). Sometimes there is no intention of ever converting the values to “real”
units, because one is interested only in qualitative behaviors of the model, or
in comparing the simulation to predictions from a statistical mechanical theory
applied to the same model.

Perhaps it is worthwhile to consider an example demonstrating conversion to and
from scaled units. The Lennard-Jones (LJ) equation of state (which describes
how the pressure depends on temperature and density for the LJ model fluid) is
very well known from molecular simulation studies (ref). One can find extensive
data and accurate empirical models in the literature. All of these data are
presented in sigma-epsilon units (i.e., units in which the LJ size and energy
parameters are 1). Further, it is not unusual to find works in which the LJ
equation of state is compared to experimental data for a real system. The aim
of these studies is to find values (expressed in real units) of the LJ parameters
such that the LJ model data coincides with the experimental data as much as
possible. Thus one might arrive for example at the values of σ = 3.790Å and
ε/kB = 142.1 K as “best” values for methane. With these values in hand, one
can go on to estimate the pressure of methane at 0.0183 mol/cm3 and 167 K.
The first step is to put these values in dimensionless form using the methane LJ
parameters

ρ∗ ≡ ρσ3 = (0.0183 mol/cm3)(3.790 × 10−8cm)3(6.022 × 1023 molecules
mole ) = 0.6

T ∗ = T/(ε/kB) = (167 K)/(142.1 K) = 1.174

The LJ model at these state conditions has a dimensionless pressure P ∗ = 0.146.
For the methane σ and ε values, this corresponds to a “real” pressure of

P = 0.146(142.1 K)(13.8 MPa · Å3/molecule)/(3.790Å)3 = 5.3 MPa

or 53 bars.

Let us finish this section by highlighting a peculiar feature of the hard-sphere
model. In the HS model the potential is infinite for atoms separated by less than
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one diameter σ, and is zero otherwise.

Figure 2: The hard-sphere potential.

The HS diameter introduces a natural length scale for the model. However, the
model defines no natural energy scale, inasmuch as zero and infinity are not
suitable characteristic values. In fact, in hard-sphere systems the temperature
provides the only suitable scale for the energy. Consequently, the value of
dimensionless groups (such as Pσ3/kBT ) cannot depend on the temperature;
the only independent, dimensionless state variable that can be constructed is the
density ρσ3. The hard-sphere model has important simplifying features such as
this, and yet it captures an essential feature (harsh repulsion at short distances)
of the behavior of real atoms. This is a good balance of simplicity and realism,
and thus the hard-sphere model—examined through the application of theory
and molecular simulation—has played a very important role in the development
of our understanding of real fluids and solids.
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