
Molecular Dynamics

The molecular dynamics technique simulates a classical system of molecules in the most
natural way: it integrates the governing equations of motion through time. The sequence
of configurations generated could be run as a movie and looks very realistic (or at least
what we envision as realistic based on our everyday experiences with classical
mechanics). Properties are collected as a time average. We encountered molecular
dynamics at the very outset of this text, where we derived the algorithm for tracing the
motion of hard-sphere atoms. For such potentials the algorithm entails repeatedly
advancing the system to the next pair-collision and handling the ensuing collision
dynamics. Hard potentials are not sufficiently realistic for many applications, and when
we move to more accurate, soft potentials we can no longer apply the very efficient
collision-detection algorithm. Instead we must apply a more traditional numerical
technique of the type encountered in other fields of numerical simulation and analysis.
This is one of the primary topics of the present chapter. However, as we will see, there is
much more to molecular dynamics than the mere application of an off-the-shelf
numerical technique to the equations of motion. Before entering a discussion of the
algorithmic matters, it is worthwhile to review the standard formulations of classical
mechanics.

Classical mechanics

(this discussion is already in the web textbook)

From the Hamiltonian formulation of mechanics, the equations of motion are written as a
set of first-order differential equations

 (1.1)

Calculating forces

The forces needed to integrate Eq. (1.1) are derived from the intra-atomic potential
model. The force is the gradient of the potential energy. In the simplest case the
potential is pairwise additive and spherically symmetric. For this situation the geometry

j j

j
j

d
dt m
d
dt

=

=

r p

p
F

2

1
r12

x12

y12

of the force calculation is depicted in Illustration 1 (this 2D example is easily converted
to the 3D situation). The (vector) force that atom 2 exerts on atom 1 is

where with . Here r12 is the vector difference ; in

particular

so we can write (in a form applicable to any dimension)

Of course this relation satisfies Newton’s third law

As an example, let’s consider the Lennard-Jones model

12 1 12

12 12

1 1

12 12 12

12 1 1

12
12 12

12

()

() ()

()

()

x y

x y

x y

u r

u r u r
x y

du r r r
dr x y
f r x y

® = -Ñ

¶ ¶
= - -

¶ ¶

é ù¶ ¶
= - +ê ú¶ ¶ë û

é ù= - +ë û

rF

e e

e e

e e
r

12

12
()()

r r

du rf r
dr =

= - 12 12r = r 2 1-r r

12 2 1 2 1

12 12

() ()x y

x y

x x y y

x y

= - + -

= +

r e e

e e

12
2 1 12

12

12 12

()

ˆ()

f r

f r

® = -

= -

rF
r
r

2 1 1 2® ®= -F F

12 6

13 7

14 8

2 1 12 122
12 12

() 4

()

48 1
2

48 1
2 x y

u r
r r

duf r
dr

r r

x y
r r

s se

e s s
s

e s s
s

®

é ùæ ö æ ö= -ê úç ÷ ç ÷
è ø è øê úë û

= -

é ùæ ö æ ö= + -ê úç ÷ ç ÷
è ø è øê úë û
é ùæ ö æ öê ú é ù= - - +ç ÷ ç ÷ ë ûê úè ø è øë û

F e e

It is good that the force, like the potential, is given in terms of even powers of r12; this
means that the force can be computed while avoiding an expensive square-root
calculation.

The LJ potential and the corresponding force (i.e., its magnitude) are presented in
Illustration 2.

Integration algorithms

The usual approach to integrating a set of first-order differential equations is to advance
the system variables through a discrete step in time dt by approximating the action of the
derivative via finite differences. Methods vary in several ways. Some make use of the
prior evolution of the trajectory to approximate the effects of higher-order derivatives.
There are choices to be made about when and how to apply information obtained upon
evaluating the right-hand side of the governing differential equations. According to Eq.
(1.1), in MD these function evaluations require computation of the forces acting on each
atom. In an MD simulation the force calculation consumes an overwhelming amount of
the total CPU time (as much as 90%), and it is essential that it be performed no more than
once per time step. Thus, most standard methods are entirely inappropriate for MD
simulation because they do not economize on the force calculation (e.g., Runge-Kutta
would require it be evaluated four times per time step). One could justify multiple force
evaluations per time step if it led to a commensurate increase in the step size (i.e., two

4

2

0

-2

2.52.01.51.0
Separation, r/s

 Energy
 Force

force evaluations would permit more than doubling the time step). In most MD
calculations this proportion cannot be achieved because the forces are very rapidly
changing nonlinear functions, particularly in the region where the atoms repel each other.

So one of the desirable features of an MD integrator is to minimize the need for the force
calculation. Also the integrator should be stable. This means that any small departure of
the integration from the correct trajectory will not tend to even greater departures. One
might wish that the integrator also be accurate, in the sense that over long times it
produces a trajectory that deviates from the correct trajectory by an amount as small as
possible. However, such an ambition is misplaced. The detailed dynamics of
multiatomic systems is complex and chaotic. An infinitesimal change in the position of
one atom’s coordinate or momentum will propagate quickly to all other atoms, and
ultimately (and perhaps suddenly) lead to a large, strongly disproportionate, deviation in
the trajectory. Since all atom positions and momenta are kept to a finite precision in the
computer, such deviations are inevitable no matter what algorithm is applied. While this
situation might seem troubling, we should remember that at this point we have already
introduced a much more severe approximation by using classical mechanics in lieu of the
correct quantum treatment. Much more important than absolute accuracy of the
trajectories is adherence of the whole system to conservation of energy and momentum.
Failure in this regard implies failure to sample the correct statistical mechanical
ensemble. Small fluctuations in energy conservation can be tolerated, but there should be
no systematic drift. Another desirable (but not essential) feature of an integrator is that it
be time-reversible. This means that if at some instant all the velocities were reversed, the
system would in principle backtrack over its prior trajectory. As we proceed we will
show examples of how different algorithms do or do not meet this criterion. Finally, it is
good for an integrator to be symplectic. This means that it preserves the volume of phase
space it is attempting to sample. We will delve into this issue more at a later point.

Verlet algorithms

Work by Verlet has led to a class of algorithms that are simple and effective, and
consequently very popular. The original Verlet algorithm is based on a simple expansion
of the atomic coordinates forward and backward in time by a step dt

Addition of these formulas yields

which upon rearrangement gives a prescription for the position at the next step in time

2 3 41 1 1
2 3!

2 3 41 1 1
2 3!

() () () () () ()

() () () () () ()
m m

m m

t t t t t t t t t O t

t t t t t t t t t O t

d d d d d

d d d d d

+ = + + + +

- = - + - +

r r p F r

r r p F r

!!!

!!!

2 41() () 2 () () ()mt t t t t t t O td d d d+ + - = + +r r r F

2 41() 2 () () () ()mt t t t t t t O td d d d+ = - - + +r r r F

Note that the position at the previous step is saved and used to project the position at the
next step. Remarkably, the positions are updated without ever consulting the velocities.
In fact, a small drawback to the method is that the momenta are never computed.
However, if it is desired to know them (for example, to compute the momentum
temperature), they can be estimated by a finite difference

It is helpful to introduce in lieu of the previous-step position r(t-dt) a quantity Dr
that holds the position change, and to break the advancement into two steps

 (1.2)

Since Dr is a quantity of order dt, one advantage of this reformulation is that we never
add terms that differ by more than one order in dt; this can help avoid errors associated
with the machine precision. Another advantage is that the effects of the periodic
boundaries are handled more naturally. In the original formulation, if periodic
boundaries are invoked after the atom is moved, one must be careful to work with the
minimum image when evaluating the difference . In the reformulation one
can apply periodic boundaries to rnew without affecting Dr, so this programming error is
not likely to be made.

If we introduce what is basically a change of notation, writing Dr in terms of the
momentum as (p/m)dt, then Eq. (1.2) can be written

 (1.3)

These equations constitute the so-called Verlet leapfrog algorithm. Although the
momentum now appears explicitly, its evaluation at time t (i.e., for the same time that the
positions are known) requires interpolating the values at the surrounding half-intervals

This suggests that an algorithm in which the velocities are integrated using a time step
that is half as large as the time step for advancing the positions. Such an approach is
systematized in the velocity-Verlet algorithm. The working formulas are

[] 2() () () ()
2
mt t t t t O t
t

d d d
d

= + - - +p r r

21 ()new old
m

new old new

t tdD = D +

= + D

r r F

r r r

() ()t t td- -r r

1 1
2 2

1 1
2

() () ()

() () ()m

t t t t t t

t t t t t t

d d d

d d d

+ = - +

+ = + +

p p F

r r p

1 1
2 2

1() () ()
2

t t t t td dé ù= + + -ë ûp p p

 (1.4)

Between the second and third steps the forces are computed for the positions obtained in
the first step. Note that the force added to the momentum in the third step is the same
force used to increment the momentum in the first step at the next time increment.
Performing this addition all at once gives us instead just the first equation of the leapfrog
algorithm, so it is easy to see that they yield identical trajectories. The advantage of the
velocity Verlet treatment is the availability of the momenta at the same time as the
positions.

Time reversibility

The Verlet algorithms are time reversible. This means that upon changing the sign of the
time increment dt, the algorithm will (in principle) retrace the steps it just followed. Note
that we are not saying that time reversibility involves a reversal of the algorithm. For
example, testing for time reversibility does not entail running the steps in Eq. (1.4) from
the third one to the first one. Rather, we simply change dt to -dt, and then run the
algorithm forward as written. An example of a time-irreversible algorithm is a simple
forward Euler approach (which is, by the way, a terrible algorithm)

 (1.5)

Assuming we have advanced from at time t0 to t0 + dt, we can look to see where we end
up if we subsequently apply the algorithm with dt replaced by -dt. We’ll use a subscript
‘f’ to indicate a coordinate/momentum obtained during the forward traversal, and an ‘r’ to
indicate those obtained upon reversing the time

 (1.6)

Substituting in from Eq. (1.5) for the corresponding terms on the right-hand side of Eq.
(1.6)

And now simplifying both sides

1 1
2 2

1 1
2

1 1
2 2

() () ()

() () ()

() () ()
m

t t t t t

t t t t t t

t t t t t t t

d d

d d d

d d d d

+ = +

+ = + +

+ = + + +

p p F

r r p

p p F

21 1
2() () () ()

() () ()
m mt t t t t t t

t t t t t

d d d

d d

+ = + +

+ = +

r r p F

p p F

21 1
2() () ()() ()()

() () ()()
r o f o f o om m

r o f o o

t t t t t t t t t t t

t t t t t t t t

d d d d d d d

d d d d d

+ - = + + + - + + -

+ - = + + + -

r r p F

p p F

[]2 21 1 1
2 2() () () () () ()()

() () () ()()

r o f o o o om m m

r o f o o o

t t t t t t t t t t

t t t t t t t

d d d d d

d d d

é ù= + + - + + -ë û
é ù= + + + -ë û

r r F F F

p p F F

The lack of equality in these equations indicates that the formulas are not time reversible.
This situation comes about because the forces encountered at the beginning and end of
each time step do not enter in a symmetric way. In contrast, consider the same analysis
of the velocity-Verlet algorithm. After proceeding one time step according to Eq. (1.4)
we reverse time and obtain, first for the momentum at the half-time increment

which, upon substitution from Eq. (1.4) and simplifying

which shows that the same momentum is obtained at the half-time step. The algorithm
next updates the positions

Substituting and simplifying as before

Finally, the momentum is again updated

which becomes

and complete time-reversibility is demonstrated.

[]
[]

21
2() () () ()

() () () ()
r o f o o om

r o f o o o

t t t t t t

t t t t t t

d d

d d

= + + -

= - + -

r r F F

p p F F

1 1
2 2() () ()()r o f o ot t t t t t t td d d d d+ - = + + + -p p F

1 1 1 1
2 2 2 2

1 1
2 2

() () () ()()

() ()

r o f o o o

r o f o

t t t t t t t t t t t

t t t t

d d d d d d d

d d

é ù+ - = + + + + + -ë û
+ = +

p p F F

p p

1 1
2() () ()()r o f o r omt t t t t t t t td d d d d d+ - = + + + - -r r p

()
1 1 1 1

2 2

1 1 1
2 2

() () () ()()

() () () ()

() ()

r o f o f o r om m

r o f o f o r om

r o f o

t t t t t t t t t t t

t t t t t t t

t t

d d d d d d d

d d d

é ù+ - = + + + + - -ë û

= + + - +

=

r r p p

r r p p

r r

1 1
2 2() () ()()r o r o ot t t t t t t t t td d d d d d d+ - = + - + + - -p p F

1 1
2 2
1 1
2 2
1 1
2 2

() () ()

() () ()

() () () ()

() ()

r o r o o

r o f o o

r o f o o o

r o f o

t t t t t

t t t t t

t t t t t t

t t

d d

d d

d d

= + -

= + -

é ù= + -ë û
=

p p F

p p F

p p F F

p p

Implementation

Illustration 1 summarizes the Verlet algorithm, and shows how it fits into the
structure of a molecular simulation program as presented in a previous chapter. One
issue not covered in the algorithm is start up of the simulation. At time zero the
momentum at the preceding half-time interval is not available. However it is easily
estimated from the forces acting on the atoms in their initial configuration

Selection of initial velocities is performed at random, consistent with the desired
temperature as described previously in the context of hard-sphere MD.

Java code

1 1
0 0 02 2() () ()t t t t td d- = -p p F

Configuration r(t)
Previous configuration r(t-dt)

Compute forces F(t)
on all atoms using r(t)

Advance all positions according to
r(t+dt) = 2r(t)-r(t-dt)+F(t)/m dt2

Add to block sum

End of N
Block
averages Y

Initialization

Reset block sums

Compute block

Compute final results

Entire

New configuration

Add to block sum

One MD Cycle

One force
evaluation per
time step

The parts of a molecular simulation particular to molecular dynamics enter into the
molecular simulation API through the Integrator and the Potential. The integrator is
responsible for implementing the molecular dynamics algorithm, while the potential is
responsible for defining the force between atoms. These parts are highlighted in the chart

given in Illustration 4. Java code implementing the force calculation for the LJ model is
presented in Illustration 5.

User's Perspective on the Molecular Simulation API

Space

IntegratorVerlet

Controller

Meter

Boundary

Configuration

Phase

Species

Potential

Potential2

Display

Device

Simulation

An implementation of the velocity Verlet algorithm is given in Illustration 6. Note that
this class defines the Integrator.Agent inner class to have a vector holding the force
acting on each atom.

//method inside public class PotentialLJ implements PotentialSoft
//Space.Vector used to compute and return a force
private Space.Vector force = Simulation.space.makeVector();

//Given a pair of atoms, computes the force that atom2 exerts on atom1
public Space.Vector force(AtomPair pair) {
 double r2 = pair.r2(); //squared distance between pair of atoms
 if(r2 > cutoffDiameterSquared) {
 force.E(0.0);} //outside cutoff; no interaction
 }
 else { //inside cutoff
 double s2 = sigmaSquared/r2; // (sigma/r)^2
 double s6 = s2*s2*s2; // (sigma/r)^6
 force.E(pair.dr()); // f = (x12 ex + y12 ey) (vector)
 force.TE(-48*s2*s6*(s6-0.5)/sigmaSquared);
 // f *= -48*(sigma/r)^8 * [(sigma/r)^6 - 1/2] / sigma^2
 }
 return force;
}

//Method inside of public class IntegratorVelocityVerlet extends IntegratorMD

//advances all atom positions by one time step
public void doStep() {

 atomIterator.reset(); //reset iterator of atoms
 while(atomIterator.hasNext()) { //loop over all atoms
 Atom a = atomIterator.next(); // advancing positions full step
 Agent agent = (Agent)a.ia; // and momenta half step
 Space.Vector r = a.position();
 Space.Vector p = a.momentum();
 p.PEa1Tv1(0.5*timeStep,agent.force); // p += f(old)*dt/2
 r.PEa1Tv1(timeStep*a.rm(),p); // r += p*dt/m
 agent.force.E(0.0);
 }
 pairIterator.allPairs(forceSum); //compute forces on each atom
 atomIterator.reset();
 while(atomIterator.hasNext()) { //loop over atoms again
 Atom a = atomIterator.next(); // finishing the momentum step
 a.momentum().PEa1Tv1(0.5*timeStep,((Agent)a.ia).force); //p += f(new)*dt/2
 }
 return;
}

//class defining the agent for this integrator
public final static class Agent implements Integrator.Agent { //need public so to use with
instanceof
 public Atom atom;
 public Space.Vector force;

 public Agent(Atom a) {
 atom = a;
 force = Simulation.space.makeVector();
 }
 }

	ZEqnNum528075
	ZEqnNum125196
	ZEqnNum149242
	ZEqnNum928444
	ZEqnNum856139
	ZEqnNum626016
	ZEqnNum959745
	ZEqnNum474081

