
Molecular Dynamics 

The molecular dynamics technique simulates a classical system of molecules in the most 
natural way: it integrates the governing equations of motion through time.  The sequence 
of configurations generated could be run as a movie and looks very realistic (or at least 
what we envision as realistic based on our everyday experiences with classical 
mechanics).  Properties are collected as a time average.  We encountered molecular 
dynamics at the very outset of this text, where we derived the algorithm for tracing the 
motion of hard-sphere atoms.  For such potentials the algorithm entails repeatedly 
advancing the system to the next pair-collision and handling the ensuing collision 
dynamics.  Hard potentials are not sufficiently realistic for many applications, and when 
we move to more accurate, soft potentials we can no longer apply the very efficient 
collision-detection algorithm.  Instead we must apply a more traditional numerical 
technique of the type encountered in other fields of numerical simulation and analysis.  
This is one of the primary topics of the present chapter. However, as we will see, there is 
much more to molecular dynamics than the mere application of an off-the-shelf 
numerical technique to the equations of motion.  Before entering a discussion of the 
algorithmic matters, it is worthwhile to review the standard formulations of classical 
mechanics. 

Classical mechanics 

(this discussion is already in the web textbook) 

From the Hamiltonian formulation of mechanics, the equations of motion are written as a 
set of first-order differential equations 

  (1.1) 

Calculating forces 

The forces needed to integrate Eq. (1.1) are derived from the intra-atomic potential 
model.  The force is the gradient of the potential energy.  In the simplest case the 
potential is pairwise additive and spherically symmetric.  For this situation the geometry 
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of the force calculation is depicted in Illustration 1 (this 2D example is easily converted 
to the 3D situation).  The (vector) force that atom 2 exerts on atom 1 is  

  

where with .  Here r12 is the vector difference ;  in 

particular 

  

so we can write (in a form applicable to any dimension) 

  

Of course this relation satisfies Newton’s third law 

  

As an example, let’s consider the Lennard-Jones model 
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It is good that the force, like the potential, is given in terms of even powers of r12; this 
means that the force can be computed while avoiding an expensive square-root 
calculation. 

The LJ potential and the corresponding force (i.e., its magnitude) are presented in 
Illustration 2. 

 

 

Integration algorithms 

The usual approach to integrating a set of first-order differential equations is to advance 
the system variables through a discrete step in time dt by approximating the action of the 
derivative via finite differences.  Methods vary in several ways.  Some make use of the 
prior evolution of the trajectory to approximate the effects of higher-order derivatives.  
There are choices to be made about when and how to apply information obtained upon 
evaluating the right-hand side of the governing differential equations.  According to Eq. 
(1.1), in MD these function evaluations require computation of the forces acting on each 
atom. In an MD simulation the force calculation consumes an overwhelming amount of 
the total CPU time (as much as 90%), and it is essential that it be performed no more than 
once per time step.  Thus, most standard methods are entirely inappropriate for MD 
simulation because they do not economize on the force calculation (e.g., Runge-Kutta 
would require it be evaluated four times per time step).  One could justify multiple force 
evaluations per time step if it led to a commensurate increase in the step size (i.e., two 
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force evaluations would permit more than doubling the time step).  In most MD 
calculations this proportion cannot be achieved because the forces are very rapidly 
changing nonlinear functions, particularly in the region where the atoms repel each other. 

So one of the desirable features of an MD integrator is to minimize the need for the force 
calculation.  Also the integrator should be stable.  This means that any small departure of 
the integration from the correct trajectory will not tend to even greater departures.  One 
might wish that the integrator also be accurate, in the sense that over long times it 
produces a trajectory that deviates from the correct trajectory by an amount as small as 
possible.  However, such an ambition is misplaced.  The detailed dynamics of 
multiatomic systems is complex and chaotic.  An infinitesimal change in the position of 
one atom’s coordinate or momentum will propagate quickly to all other atoms, and 
ultimately (and perhaps suddenly) lead to a large, strongly disproportionate, deviation in 
the trajectory.  Since all atom positions and momenta are kept to a finite precision in the 
computer, such deviations are inevitable no matter what algorithm is applied.  While this 
situation might seem troubling, we should remember that at this point we have already 
introduced a much more severe approximation by using classical mechanics in lieu of the 
correct quantum treatment.  Much more important than absolute accuracy of the 
trajectories is adherence of the whole system to conservation of energy and momentum.  
Failure in this regard implies failure to sample the correct statistical mechanical 
ensemble.  Small fluctuations in energy conservation can be tolerated, but there should be 
no systematic drift.  Another desirable (but not essential) feature of an integrator is that it 
be time-reversible.  This means that if at some instant all the velocities were reversed, the 
system would in principle backtrack over its prior trajectory.  As we proceed we will 
show examples of how different algorithms do or do not meet this criterion.  Finally, it is 
good for an integrator to be symplectic.  This means that it preserves the volume of phase 
space it is attempting to sample.  We will delve into this issue more at a later point. 

Verlet algorithms 

Work by Verlet has led to a class of algorithms that are simple and effective, and 
consequently very popular.  The original Verlet algorithm is based on a simple expansion 
of the atomic coordinates forward and backward in time by a step dt 

  

Addition of these formulas yields 

  
which upon rearrangement gives a prescription for the position at the next step in time 
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Note that the position at the previous step is saved and used to project the position at the 
next step.  Remarkably, the positions are updated without ever consulting the velocities.  
In fact, a small drawback to the method is that the momenta are never computed.  
However, if it is desired to know them (for example, to compute the momentum 
temperature), they can be estimated by a finite difference 

  

It is helpful to introduce in lieu of the previous-step position r(t-dt) a quantity Dr 
that holds the position change, and to break the advancement into two steps 

  (1.2) 

Since Dr is a quantity of order dt, one advantage of this reformulation is that we never 
add terms that differ by more than one order in dt; this can help avoid errors associated 
with the machine precision.  Another advantage is that the effects of the periodic 
boundaries are handled more naturally.  In the original formulation, if periodic 
boundaries are invoked after the atom is moved, one must be careful to work with the 
minimum image when evaluating the difference .  In the reformulation one 
can apply periodic boundaries to rnew without affecting Dr, so this programming error is 
not likely to be made.   

If we introduce what is basically a change of notation, writing Dr in terms of the 
momentum as (p/m)dt, then Eq. (1.2) can be written 

  (1.3) 

These equations constitute the so-called Verlet leapfrog algorithm.  Although the 
momentum now appears explicitly, its evaluation at time t (i.e., for the same time that the 
positions are known) requires interpolating the values at the surrounding half-intervals 

  

This suggests that an algorithm in which the velocities are integrated using a time step 
that is half as large as the time step for advancing the positions.  Such an approach is 
systematized in the velocity-Verlet algorithm.  The working formulas are 
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  (1.4) 

Between the second and third steps the forces are computed for the positions obtained in 
the first step.  Note that the force added to the momentum in the third step is the same 
force used to increment the momentum in the first step at the next time increment.  
Performing this addition all at once gives us instead just the first equation of the leapfrog 
algorithm, so it is easy to see that they yield identical trajectories.  The advantage of the 
velocity Verlet treatment is the availability of the momenta at the same time as the 
positions. 

Time reversibility 

The Verlet algorithms are time reversible.  This means that upon changing the sign of the 
time increment dt, the algorithm will (in principle) retrace the steps it just followed.  Note 
that we are not saying that time reversibility involves a reversal of the algorithm.  For 
example, testing for time reversibility does not entail running the steps in Eq. (1.4) from 
the third one to the first one.  Rather, we simply change dt to -dt, and then run the 
algorithm forward as written.  An example of a time-irreversible algorithm is a simple 
forward Euler approach (which is, by the way, a terrible algorithm) 

  (1.5) 

Assuming we have advanced from at time t0 to t0 + dt, we can look to see where we end 
up if we subsequently apply the algorithm with dt replaced by -dt.  We’ll use a subscript 
‘f’ to indicate a coordinate/momentum obtained during the forward traversal, and an ‘r’ to 
indicate those obtained upon reversing the time 

  (1.6) 

Substituting in from Eq. (1.5) for the corresponding terms on the right-hand side of Eq. 
(1.6) 

  

And now simplifying both sides 

1 1
2 2

1 1
2

1 1
2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
m

t t t t t

t t t t t t

t t t t t t t

d d

d d d

d d d d

+ = +

+ = + +

+ = + + +

p p F

r r p

p p F

21 1
2( ) ( ) ( ) ( )

( ) ( ) ( )
m mt t t t t t t

t t t t t

d d d

d d

+ = + +

+ = +

r r p F

p p F

21 1
2( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )
r o f o f o om m

r o f o o

t t t t t t t t t t t

t t t t t t t t

d d d d d d d

d d d d d

+ - = + + + - + + -

+ - = + + + -

r r p F

p p F

[ ]2 21 1 1
2 2( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

r o f o o o om m m

r o f o o o

t t t t t t t t t t

t t t t t t t

d d d d d

d d d

é ù= + + - + + -ë û
é ù= + + + -ë û

r r F F F

p p F F



  

The lack of equality in these equations indicates that the formulas are not time reversible.  
This situation comes about because the forces encountered at the beginning and end of 
each time step do not enter in a symmetric way.  In contrast, consider the same analysis 
of the velocity-Verlet algorithm.  After proceeding one time step according to Eq. (1.4)
we reverse time and obtain, first for the momentum at the half-time increment   

  

which, upon substitution from Eq. (1.4) and simplifying 

  

which shows that the same momentum is obtained at the half-time step.  The algorithm 
next updates the positions 

  

Substituting and simplifying as before 

  

Finally, the momentum is again updated  

  

which becomes  

  

and complete time-reversibility is demonstrated.  
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Implementation 

Illustration 1 summarizes the Verlet algorithm, and shows how it fits into the 
structure of a molecular simulation program as presented in a previous chapter.  One 
issue not covered in the algorithm is start up of the simulation.  At time zero the 
momentum at the preceding half-time interval is not available.  However it is easily 
estimated from the forces acting on the atoms in their initial configuration 

  
Selection of initial velocities is performed at random, consistent with the desired 
temperature as described previously in the context of hard-sphere MD. 
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The parts of a molecular simulation particular to molecular dynamics enter into the 
molecular simulation API through the Integrator and the Potential.  The integrator is 
responsible for implementing the molecular dynamics algorithm, while the potential is 
responsible for defining the force between atoms.  These parts are highlighted in the chart 

given in Illustration 4.  Java code implementing the force calculation for the LJ model is 
presented in Illustration 5. 
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An implementation of the velocity Verlet algorithm is given in Illustration 6.  Note that 
this class defines the Integrator.Agent inner class to have a vector holding the force 
acting on each atom. 

 

//method inside public class PotentialLJ implements PotentialSoft 
//Space.Vector used to compute and return a force 
private Space.Vector force = Simulation.space.makeVector(); 
 
//Given a pair of atoms, computes the force that atom2 exerts on atom1  
public Space.Vector force(AtomPair pair) { 
  double r2 = pair.r2();          //squared distance between pair of atoms 
  if(r2 > cutoffDiameterSquared) { 
    force.E(0.0);}                //outside cutoff; no interaction 
  } 
  else {                          //inside cutoff 
    double s2 = sigmaSquared/r2;  // (sigma/r)^2 
    double s6 = s2*s2*s2;         // (sigma/r)^6 
    force.E(pair.dr());           // f = (x12 ex + y12 ey)  (vector) 
    force.TE(-48*s2*s6*(s6-0.5)/sigmaSquared);  
                                  // f *= -48*(sigma/r)^8 * [(sigma/r)^6 - 1/2] / sigma^2 
  } 
  return force; 
}        

//Method inside of public class IntegratorVelocityVerlet extends IntegratorMD 
 
//advances all atom positions by one time step 
public void doStep() { 
 
   atomIterator.reset();              //reset iterator of atoms 
   while(atomIterator.hasNext()) {    //loop over all atoms 
     Atom a = atomIterator.next();  //  advancing positions full step 
     Agent agent = (Agent)a.ia;     //  and momenta half step 
     Space.Vector r = a.position(); 
     Space.Vector p = a.momentum(); 
     p.PEa1Tv1(0.5*timeStep,agent.force);  // p += f(old)*dt/2 
     r.PEa1Tv1(timeStep*a.rm(),p);         // r += p*dt/m 
     agent.force.E(0.0); 
  } 
  pairIterator.allPairs(forceSum);    //compute forces on each atom 
  atomIterator.reset(); 
  while(atomIterator.hasNext()) {     //loop over atoms again 
     Atom a = atomIterator.next();   //  finishing the momentum step 
     a.momentum().PEa1Tv1(0.5*timeStep,((Agent)a.ia).force);  //p += f(new)*dt/2 
  } 
  return; 
} 
 
//class defining the agent for this integrator 
public final static class Agent implements Integrator.Agent {  //need public so to use with 
instanceof 
        public Atom atom; 
        public Space.Vector force; 
 
        public Agent(Atom a) { 
            atom = a; 
            force = Simulation.space.makeVector(); 
        } 
    } 
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